Detailed Information

Cited 5 time in webofscience Cited 4 time in scopus
Metadata Downloads

Insights into the dynamics of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant: The case of Non-Newtonian Williamson fluid

Authors
Khan, UmairZaib, A.Ishak, A.Bakar, Sakhinah AbuAnimasaun, I.L.Yook, Se-Jin
Issue Date
Mar-2022
Publisher
Elsevier B.V.
Keywords
Blood-gold nanofluid; Dynamics on a curved surface; Lorentz force; Non-Newtonian Williamson fluid; Suction and thermal radiation
Citation
Mathematics and Computers in Simulation, v.193, pp.250 - 268
Indexed
SCOPUS
Journal Title
Mathematics and Computers in Simulation
Volume
193
Start Page
250
End Page
268
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/139390
DOI
10.1016/j.matcom.2021.10.014
ISSN
0378-4754
Abstract
The motion of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant is explored in this report with the aim to announce the increasing effects of Williamson fluid parameter, volume fraction, radius of curvature, thermal radiation, and Lorentz force on such a transport phenomenon. This report was designed to explore the upper and lower solutions of the model suitable to study the enhancement of the aforementioned variables. The similarity solution of the dimensional governing equation was sought using the appropriate similarity variables. These dimensionless forms of ODEs are numerically solved using the 3-stage Lobatto formula, also known as bvp4c. The validation of the numerical scheme was considered. The drag force decelerates and then upsurges owing to the volume fraction of nanoparticles in the corresponding UBS and reduces in LBS, while the rate of heat transfer drastically decreases. The temperature and velocity gradient escalate and decelerate, respectively for both branches of results owing to the effect of higher curvature parameter. The temperature distribution decelerates in both outcomes due to the strength of mass suction while the velocity is​ weakened in the lower branch solution (LBS) and augments in the upper branch solution (UBS).
Files in This Item
There are no files associated with this item.
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yook, Se Jin photo

Yook, Se Jin
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE