Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Neoclassical transport analysis of high rotational trace limit tungsten impurities in KSTAR tokamak

Authors
Lee, HyojongLee, HyeonjunHan, Yoon SeongSong, JiheonBelli, E.A.Choe, WonhoKang, JisungLee, JekilCandy, J.Lee, Jungpyo
Issue Date
Feb-2022
Publisher
American Institute of Physics Inc.
Citation
Physics of Plasmas, v.29, no.2, pp.1 - 11
Indexed
SCIE
SCOPUS
Journal Title
Physics of Plasmas
Volume
29
Number
2
Start Page
1
End Page
11
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/139606
DOI
10.1063/5.0071192
ISSN
1070-664X
Abstract
The accumulation of tungsten impurities measured in a KSTAR experiment was analyzed theoretically using a drift-kinetic code, NEO, to determine the contribution of neoclassical transport. According to the NEO simulation results, there is a certain value of impurity toroidal rotation speed maximizing the neoclassical inward convection. The inward convection decreases or the outward convection increases as the rotation increases only beyond the speed value. The non-monotonic dependency of the neoclassical convection on the rotation is analyzed by the several coefficients for many profile effects, including ion and electron profiles. The dependency of the coefficients for the main ion density gradient on the rotation is different from that for the temperature gradient, so it results in the amplification of the temperature screening beyond the certain value of the rotation. In the KSTAR case with high toroidal rotation of the tungsten (around Mach number 4.5), only in the mid-radius does the rotation reduce the inward impurity particle convection or change the inward convection to the outward convection. Thus, the rotation is a useful tool to control the impurity accumulation conditionally. The favorable condition occurs only for high rotation, which significantly depends on the radius and the collisionality due to the complicated non-monotonic dependency of the convection on the rotation speed.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 원자력공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jungpyo photo

Lee, Jungpyo
COLLEGE OF ENGINEERING (DEPARTMENT OF NUCLEAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE