Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Lowering the sintering temperature of a gadolinia-doped ceria functional layer using a layered Bi2O3 sintering aid for solid oxide fuel cells

Authors
Lee, HojaePark, JunghumLim, YonghyunKim, Young-Beom
Issue Date
Jan-2022
Publisher
ELSEVIER SCI LTD
Keywords
Solid oxide fuel cell; Lanthanum strontium cobalt ferrite; Gadolinia-doped ceria; Bismuth oxide sintering aid layer; Constrained sintering
Citation
CERAMICS INTERNATIONAL, v.48, no.2, pp.2865 - 2871
Indexed
SCIE
SCOPUS
Journal Title
CERAMICS INTERNATIONAL
Volume
48
Number
2
Start Page
2865
End Page
2871
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/139692
DOI
10.1016/j.ceramint.2021.10.076
ISSN
0272-8842
Abstract
Solid oxide fuel cells are promising renewable energy devices due to their high efficiency and fuel flexibility. As they operate at a higher temperature than other fuel cells, ceramic materials, such as perovskite-based La0.6Sr0.4CoO3 and La0.6Sr0.4Co0.2Fe0.8O3, can be used as electrodes to replace expensive noble metals. However, when the corresponding electrode and yttria-stabilized zirconia electrolyte are sintered together, SrZrO3 produced from a side reaction acts as an insulator and deteriorates the performance of the fuel cell. Thus, the dense functional layer of a ceria-based material should be introduced between the electrode and the electrolyte to suppress the formation of secondary phases. However, in the conventional cell manufacturing process, it is challenging to manufacture a dense functional layer under constrained sintering conditions. In this study, we develop a method for fabricating a dense gadolinia-doped ceria (GDC) functional layer, even under constrained sintering conditions, by using a sacrificial bismuth oxide, Bi2O3, sintering aid layer above the GDC layer. As thermal sintering progresses at 1000–1200 °C, the Bi2O3 sintering aid layer is sublimated, leaving only the pure GDC functional layer. The fabricated dense GDC functional layer characterized by various analysis methods shows improved solid oxide fuel cell performance.
Files in This Item
There are no files associated with this item.
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Beom photo

Kim, Young Beom
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE