Detailed Information

Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

Stability margin of undirected homogeneous relative sensing networks: A geometric perspective

Authors
Hamdipoor, VahidMoon, JunKim, Yoonsoo
Issue Date
Oct-2021
Publisher
ELSEVIER
Keywords
Stability margin; Relative sensing network; Laplacian matrix; Nyquist plot; Curvature
Citation
SYSTEMS & CONTROL LETTERS, v.156, pp.1 - 7
Indexed
SCIE
SCOPUS
Journal Title
SYSTEMS & CONTROL LETTERS
Volume
156
Start Page
1
End Page
7
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/140901
DOI
10.1016/j.sysconle.2021.105027
ISSN
0167-6911
Abstract
In this paper, we study the stability margin (SM) of undirected homogeneous relative sensing networks (UH-RSNs) from a geometric point of view. SM is an important robustness measure indicating the amount of simultaneous gain and phase perturbations in the feedback channels before the instability occurs. A UH-RSN is characterized by the identical local dynamics (a single-input-single-output (SISO) open-loop transfer function T-loc(s)) of individual agent and the graph Laplacian L-g representing how the agents are connected. It is shown in this paper that UH-RSNs having multiple inputs and outputs in general may be represented as a unity feedback system including the SISO T-loc(s) and one of the real eigenvalues of L-g. This representation then helps to identify a class of cooperative T-loc(s) for which (1) SM becomes maximized or equal to 1 when the network's connectivity (the second smallest eigenvalue of L-g is greater than or equal to the curvature of the Nyquist plot of T-loc(s) at the origin; and (2) two bounds on SM are obtained for the SM estimation based on the geometric shape of Nyquist plot. Also, the representation of unity feedback system implies that UH-RSNs with non-cooperative T-loc(s) become unstable when the agents are joined with high connectivity. Numerical examples are provided to demonstrate these findings.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 전기공학전공 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Moon, Jun photo

Moon, Jun
COLLEGE OF ENGINEERING (MAJOR IN ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE