Detailed Information

Cited 4 time in webofscience Cited 0 time in scopus
Metadata Downloads

Intranasal delivery of self-assembled nanoparticles of therapeutic peptides and antagomirs elicits anti-tumor effects in an intracranial glioblastoma model

Authors
Ha, JunkyuKim, MinkyungLee, YoungkiLee, Minhyung
Issue Date
Sep-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
Nanoscale, v.13, no.35, pp.14745 - 14759
Indexed
SCIE
SCOPUS
Journal Title
Nanoscale
Volume
13
Number
35
Start Page
14745
End Page
14759
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/141146
DOI
10.1039/d1nr03455c
ISSN
2040-3364
Abstract
MicroRNA-21 (miR-21) is involved in the progression of glioblastoma through inhibition of pro-apoptotic genes. Antisense RNA against miR-21 (antagomir-21) has been developed as a potential therapeutic reagent for the treatment of glioblastoma. The receptor for advanced glycation end-products (RAGE) is also involved in the progression of glioblastoma through induction of angiogenic factors. Therefore, RAGE-antagonist peptide (RAP) is proposed to be an anti-tumor reagent. In this study, self-assembled nanoparticles were produced solely with therapeutic agents, antagomir-21 and RAP, with no additional carrier. The therapeutic effects of the nanoparticles by intranasal delivery were evaluated in intracranial glioblastoma animal models. First, physical characterizations such as size/zeta-potential study, scanning electron microscopy, and gel retardation assays showed that antagomir-21 and RAP formed stable nanoparticles without any additional reagents. The ratio between antagomir-21 and RAP was optimized by an in vitro cellular uptake study. The antagomir-21/RAP nanoparticles were administrated intranasally in the intracranial glioblastoma animal models to bypass the blood-brain-barrier. As a result, the nanoparticles reduced the miR-21 levels in tumors. Inhibition of miR-21 by the nanoparticles induced the expression of pro-apoptotic genes, such as PTEN and PDCD4, which enhanced tumor cell apoptosis. In addition, the expression of RAGE was suppressed by the nanoparticles, resulting in decreased levels of vascular endothelial growth factor in the tumor. The reduction of CD31-positive endothelial cells confirmed the anti-angiogenic effects of the nanoparticles. The results indicate that the intranasal delivery of the self-assembled nanoparticles of antagomir-21 and RAP is an efficient treatment of glioblastoma.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 생명공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Min hyung photo

Lee, Min hyung
COLLEGE OF ENGINEERING (DEPARTMENT OF BIOENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE