Detailed Information

Cited 223 time in webofscience Cited 225 time in scopus
Metadata Downloads

Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteriesopen access

Authors
Kim, UHJun, DWPark, K.JZhang, QKaghazchi, PAurbach, DMajor, DTGoobes, GDixit, MLeifer, NWang, CMYan, PAhn, DKim, KHYoon, Chong SeungSun, Yang Kook
Issue Date
May-2018
Publisher
ROYAL SOC CHEMISTRY
Citation
ENERGY & ENVIRONMENTAL SCIENCE, v.11, no.5, pp.1271 - 1279
Indexed
SCIE
SCOPUS
Journal Title
ENERGY & ENVIRONMENTAL SCIENCE
Volume
11
Number
5
Start Page
1271
End Page
1279
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/142626
DOI
10.1039/c8ee00227d
ISSN
1754-5692
Abstract
Development of advanced high energy density lithium ion batteries is important for promoting electromobility. Making electric vehicles attractive and competitive compared to conventional automobiles depends on the availability of reliable, safe, high power, and highly energetic batteries whose components are abundant and cost effective. Nickel rich Li[NixCoyMn1−x−y]O2 layered cathode materials (x > 0.5) are of interest because they can provide very high specific capacity without pushing charging potentials to levels that oxidize the electrolyte solutions. However, these cathode materials suffer from stability problems. We discovered that doping these materials with tungsten (1 mol%) remarkably increases their stability due to a partial layered to cubic (rock salt) phase transition. We demonstrate herein highly stable Li ion battery prototypes consisting of tungsten-stabilized Ni rich cathode materials (x > 0.9) with specific capacities >220 mA h g-1. This development can increase the energy density of Li ion batteries more than 30% above the state of the art without compromising durability.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Chong Seung photo

Yoon, Chong Seung
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE