Detailed Information

Cited 14 time in webofscience Cited 14 time in scopus
Metadata Downloads

Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice

Authors
Bae, SunwoongPark, SeunghyeKim, JungChoi, Jong SeobKim, Kyung HoonKwon, DongukJin, EonSeonPark, InkyuKim, Do HyunSeo, Tae Seok
Issue Date
Dec-2015
Publisher
AMER CHEMICAL SOC
Keywords
ZnO nanowire; microalgal; gene delivery; transformation; high throughput; microfluidics; biofuel
Citation
ACS APPLIED MATERIALS & INTERFACES, v.7, no.49, pp.27554 - 27561
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
7
Number
49
Start Page
27554
End Page
27561
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/143058
DOI
10.1021/acsami.5b09964
ISSN
1944-8244
Abstract
Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic poIydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 X 10(4)- and 9.66 X 10(4)-fold higher than that of a traditional glass bead beating and electroporation.
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 생명과학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jin, Eon Seon photo

Jin, Eon Seon
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF LIFE SCIENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE