Detailed Information

Cited 13 time in webofscience Cited 14 time in scopus
Metadata Downloads

A Au nanoparticle-incorporated sponge as a versatile transmission surface-enhanced Raman scattering substrate

Authors
Shin, KayeongChung, Hoeil
Issue Date
Feb-2015
Publisher
ROYAL SOC CHEMISTRY
Citation
ANALYST, v.140, no.15, pp.5074 - 5081
Indexed
SCIE
SCOPUS
Journal Title
ANALYST
Volume
140
Number
15
Start Page
5074
End Page
5081
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/143245
DOI
10.1039/c4an02216e
ISSN
0003-2654
Abstract
We report a sponge-based transmission surface-enhanced Raman scattering (TSERS) substrate that combines the bulk sampling capabilities of a transmission measurement to improve the quantitative representation of sample concentration with several sponge properties useful for analysis such as fast sample uptake, easy sample enrichment, and a stable polymeric structure. Among nine commercially available sponges made of different materials, a melamine sponge was ultimately selected for this study because it provided the fastest sample uptake and a low background Raman signal. Simultaneously, the amino groups and three-nitrogen hybrid rings in its structure could easily hold Au nanoparticles (AuNPs) inside the sponge. AuNP-incorporated sponges (AuNP sponges) were prepared by simply soaking a melamine sponge in a AuNP solution; these sponges were initially used to measure 4-nitrobenzenethiol (4-NBT) samples with different concentrations in order to evaluate their ability as TSERS substrates. The intensities of the 4-NBT peaks clearly varied according to changes in the concentration, and the relative standard deviation (RSD) of the peak intensity estimated by the measurements of five independently prepared AuNP sponges was 10.0%. Sample enrichment was easily completed by repeated suctioning of the sample into the AuNP sponges followed by depletion of the solvent, so three-time enrichment doubled the intensity. Furthermore, paraquat samples were prepared in diverse matrices (de-ionized water, tap water, river water, and orange juice) and measured using the AuNP sponges. The paraquat peaks were clearly observed from these samples and their peak intensities became smaller with the increased compositional complexity of the matrices. Our overall results demonstrate that the TSERS sponge substrates are easy to prepare and practically versatile for SERS analysis of diverse samples.
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 화학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chung, Hoeil photo

Chung, Hoeil
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF CHEMISTRY)
Read more

Altmetrics

Total Views & Downloads

BROWSE