Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Oxygen annealing of the ZnO nanoparticle layer for the high-performance PbS colloidal quantum-dot photovoltaics

Authors
Yang, JongheeLee, JongtaekLee, JunyoungYi, Whikun
Issue Date
May-2019
Publisher
ELSEVIER
Keywords
Quantum-dot; Solar cell; ZnO nanoparticle; Surface defect; Interfacial recombination
Citation
JOURNAL OF POWER SOURCES, v.421, pp.124 - 131
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF POWER SOURCES
Volume
421
Start Page
124
End Page
131
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/147854
DOI
10.1016/j.jpowsour.2019.03.013
ISSN
0378-7753
Abstract
Though numerous researches regarding the influence of annealing atmospheric condition of ZnO have been carried out, the impact of annealing atmosphere on the carrier transporting properties and the performance of the ZnO-based optoelectronics has not been well-established. Here, the effects of annealing atmosphere (i.e., N-2, ambient air, and O-2) used to generate ZnO nanoparticle (NP) layers are elucidated. The chemical nature of ZnO layers, especially the amount of oxygen vacancies in ZnO NPs, is modulated by the annealing atmosphere. As the composition of O-2 gas increases in the annealing atmosphere, a notable reduction of oxygen vacancies of ZnO NPs and electron mobility enhancement are observed, indicating that O-2 gas contributes to a reduction of surface defects on ZnO NPs during the annealing process. In addition, trap-filling by reduced oxygen vacancies of airand O-2-annealed ZnO layers, induces the enhanced built-in potential in colloidal quantum-dot photovoltaic (CQDPV) devices. As expected, PbS CQDPVs with an air- and O-2-annealed ZnO layer demonstrate significantly improved power conversion efficiencies than CQDPVs with an N-2-annealed ZnO layer. Further analysis shows that the interfacial recombination is reduced for CQDPVs with an air- and O-2-annealed ZnO layer due to the reduced trap states of ZnO NPs.
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 화학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yi, Whi kun photo

Yi, Whi kun
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF CHEMISTRY)
Read more

Altmetrics

Total Views & Downloads

BROWSE