Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Asymmetric quantum confinement-induced energetically and spatially splitting Dirac rings in graphene/phosphorene/graphene heterostructure

Authors
Li, ChongGao, JixingZi, YanboWang, FeiNiu, ChunyaoCho, Jun HyungJia, Yu
Issue Date
Dec-2018
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Graphene-based heterostructure; Phosphorene; Dirac rings; Quantum confinement
Citation
CARBON, v.140, pp.164 - 170
Indexed
SCIE
SCOPUS
Journal Title
CARBON
Volume
140
Start Page
164
End Page
170
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/148851
DOI
10.1016/j.carbon.2018.08.057
ISSN
0008-6223
Abstract
Graphene-based two dimensional atomically thin van der Waals heterostructures show peculiar electronic feature such as energetically resolved Dirac ring. Using first-principles calculations, here we observe that there are two splitting Dirac cones in graphene/phosphorene/graphene trilayer heterostructure, which have not only the relatively large band gap opening as usual, but also possess both distinctly spatially and energetically resolved property. The underling mechanism can be attributed to the asymmetric quantum confinement-induced asymmetric charge distribution due to the presence of glide reflection of phosphorene, leading to different coupling strength between the two layers of graphene and phosphorene. As a result, the induced resolved Dirac rings have substantially different Dirac features such as Fermi velocity and asymmetric factor. Such unique features are absence in phosphorene/graphene bilayer heterostructure and the counterpart crystal. These findings provide new insights into the Dirac electric properties, and can be useful for future design of graphene-based trilayer heterostructure.
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 물리학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Jun Hyung photo

Cho, Jun Hyung
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF PHYSICS)
Read more

Altmetrics

Total Views & Downloads

BROWSE