Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Electrical and piezoresistive properties of cement composites with carbon nanomaterials

Authors
Yoo, Doo-YeolYou, IlhwanYoun, HyunchulLee, Seung-Jung
Issue Date
Oct-2018
Publisher
SAGE Publications
Keywords
Cement-based sensor; multi-walled carbon nanotube; graphite nanofiber; graphene-oxide; electrical resistivity; cyclic compression
Citation
Journal of Composite Materials, v.52, no.24, pp.3325 - 3340
Indexed
SCIE
SCOPUS
Journal Title
Journal of Composite Materials
Volume
52
Number
24
Start Page
3325
End Page
3340
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/149256
DOI
10.1177/0021998318764809
ISSN
0021-9983
Abstract
This study investigates the effect of nanomaterials on the piezoresistive sensing capacity of cement-based composites. Three different nanomaterialsmulti-walled carbon nanotubes, graphite nanofibers, and graphene oxidewere considered along with a plain mortar, and a cyclic compressive test was performed. Based on a preliminary test, the optimum flowability was determined to be 150mm in terms of fiber dispersion. The electrical resistivity of the composites substantially decreased by incorporating 1wt% multi-walled carbon nanotubes, but only slightly decreased by including 1wt% graphite nanofibers and graphene oxide. This indicates that the use of multi-walled carbon nanotubes is most effective in improving the conductivity of the composites compared to the use of graphite nanofibers and graphene oxide. The fractional change in resistivity of the composites with nanomaterials exhibited similar behavior to that of the cyclic compressive load, but partial reversibility in fractional change in resistivity was obtained beyond 60% of the peak load. A linear relationship between the fractional change in resistivity and cyclic compression strain (up to 1500 epsilon) was observed in the composites with multi-walled carbon nanotubes, and the gauge factor was found to be 166.6. It is concluded that cement-based composites with 1wt% multi-walled carbon nanotubes can be used as piezoresistive sensors for monitoring the stress/strain generated in concrete structures.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 건축공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Doo Yeol photo

Yoo, Doo Yeol
COLLEGE OF ENGINEERING (SCHOOL OF ARCHITECTURAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE