Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nociceptive Roles of TRPM2 Ion Channel in Pathologic Pain

Authors
Jang, Yong wooCho, Pyung SunYang, Young DukHwang, Sun Wook
Issue Date
Aug-2018
Publisher
HUMANA PRESS INC
Keywords
Immune cell; Nociceptor; Oxidative stress; Pain; TRPM2
Citation
Molecular Neurobiology, v.55, no.8, pp.6589 - 6600
Indexed
SCIE
SCOPUS
Journal Title
Molecular Neurobiology
Volume
55
Number
8
Start Page
6589
End Page
6600
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/149475
DOI
10.1007/s12035-017-0862-2
ISSN
0893-7648
Abstract
Pain is a protective mechanism that enables us to avoid potentially harmful environments. However, when pathologically persisted and aggravated under severely injured or inflamed conditions, pain often reduces the quality of life and thus is considered as a disease to eliminate. Inflammatory and/or neuropathic mechanisms may exaggerate interactions between damaged tissues and neural pathways for pain mediation. Similar mechanisms also promote the communication among cellular participants in synapses at spinal or higher levels, which may amplify nociceptive firing and subsequent signal transmission, deteriorating the pain sensation. In this pathology, important cellular players are afferent sensory neurons, peripheral immune cells, and spinal glial cells. Arising from damage of injury, overloaded interstitial and intracellular reactive oxygen species (ROS) and intracellular Ca2+ are key messengers in the development and maintenance of pathologic pain. Thus, an ROS-sensitive and Ca2+-permeable ion channel that is highly expressed in the participant cells might play a critical role in the pathogenesis. Transient receptor potential melastatin subtype 2 (TRPM2) is the unique molecule that satisfies all of the requirements: the sensitivity, permeability, and its expressing cells. Notable progress in delineating the role of TRPM2 in pain has been achieved during the past decade. In the present review, we summarize the important findings in the key cellular components that are involved in pathologic pain. This overview will help to understand TRPM2-mediated pain mechanisms and speculate therapeutic strategies by utilizing this updated information.
Files in This Item
Go to Link
Appears in
Collections
서울 의과대학 > 서울 약리학교실 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Yongwoo photo

Jang, Yongwoo
COLLEGE OF MEDICINE (DEPARTMENT OF PHARMACOLOGY)
Read more

Altmetrics

Total Views & Downloads

BROWSE