Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Membrane separation process for CO₂ capture from mixed gases using TR and XTR hollow fiber membranes: Process modeling and experiments

Authors
Lee, SunghoonBinns, MichaelLee, Jung HyunMoon, Jong-HoYeo, Jeong-GuYeo, Yeong-KooLee, Young MooKim, Jin-Kuk
Issue Date
Nov-2017
Publisher
ELSEVIER SCIENCE BV
Keywords
Membrane process; CO2 capture; Permeance regression; Tanks-in-series model; Newton-Raphson method
Citation
JOURNAL OF MEMBRANE SCIENCE, v.541, pp.224 - 234
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MEMBRANE SCIENCE
Volume
541
Start Page
224
End Page
234
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/151231
DOI
10.1016/j.memsci.2017.07.003
ISSN
0376-7388
Abstract
Numerous membrane models have been developed and tested for the simulation of membrane processes. However, these models are often either simplified or only validated with a narrow range of experimental data. For the model-based process design of membrane systems it is necessary to have a validated and accurate model which is accurate for the range of possible operating conditions under consideration. Hence, in this study a modeling framework is developed for hollow fiber membranes which can be adjusted systematically to accurately predict the performance of a given membrane. Mixed-gas (CO2/O-2/N-2 and CO2/N-2) separation experiments are carried out over a range of different feed conditions to evaluate membrane performance and to provide reliable measurements of gas permeance. In particular the feed pressure (1-4 bar), permeate pressure (0.1-0.5 bar) and feed flow rates (0.096-0.4 N m(3)/h) are varied in these experiments (the ranges specified in brackets). Interpolation of these measured permeance allows for the accurate prediction of membrane performance at any conditions inside the measured range. A tanks-in-series modeling approach is employed here where the number of tanks (used to represent the membrane behavior in a numerical formulation) can be adjusted to calibrate and fit the membrane model to experimental results. For the membranes tested in this study it is found that using a relatively small number of tanks both minimizes the difference between model and experimental results and reduces the numerical complexity in the membrane model.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jin Kuk photo

Kim, Jin Kuk
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE