스마트공장을 위한 빅데이터 애널리틱스 플랫폼 아키텍쳐 개발Developing a Big Data Analytics Platform Architecture for Smart Factory
- Other Titles
- Developing a Big Data Analytics Platform Architecture for Smart Factory
- Authors
- 신승준; 우정엽; 서원철
- Issue Date
- Aug-2016
- Publisher
- 한국멀티디어학회
- Keywords
- Smart Factory; Big Data; Data Analytics; Machine Learning; Manufacturing Execution System; Energy Prediction
- Citation
- 한국멀티미디어학회지, v.19, no.8, pp.1516 - 1529
- Indexed
- KCI
- Journal Title
- 한국멀티미디어학회지
- Volume
- 19
- Number
- 8
- Start Page
- 1516
- End Page
- 1529
- URI
- https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/154109
- DOI
- 10.9717/kmms.2016.19.8.1516
- ISSN
- 1229-7771
- Abstract
- While global manufacturing is becoming more competitive due to variety of customer demand, increase in production cost and uncertainty in resource availability, the future ability of manufacturing industries depends upon the implementation of Smart Factory. With the convergence of new information and communication technology, Smart Factory enables manufacturers to respond quickly to customer demand and minimize resource usage while maximizing productivity performance. This paper presents the development of a big data analytics platform architecture for Smart Factory. As this platform represents a conceptual software structure needed to implement data-driven decision-making mechanism in shop floors, it enables the creation and use of diagnosis, prediction and optimization models through the use of data analytics and big data. The completion of implementing the platform will help manufacturers: 1) acquire an advanced technology towards manufacturing intelligence, 2) implement a cost-effective analytics environment through the use of standardized data interfaces and open-source solutions, 3) obtain a technical reference for time-efficiently implementing an analytics modeling environment, and 4) eventually improve productivity performance in manufacturing systems. This paper also presents a technical architecture for big data infrastructure, which we are implementing, and a case study to demonstrate energy-predictive analytics in a machine tool system.
- Files in This Item
-
Go to Link
- Appears in
Collections - 서울 산업융합학부 > 서울 산업융합학부 > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.