Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Supercapacitive characteristics of carbon-based graphene composites

Authors
Bharathidasan, P.Kim, Dong-WonDevaraj, S.Sivakkumar, S. R.
Issue Date
Jun-2016
Publisher
Pergamon Press Ltd.
Keywords
Graphene; Reduced graphene oxide; Graphene composite; Supercapacitor; Electrochemical capacitor
Citation
Electrochimica Acta, v.204, pp.146 - 153
Indexed
SCIE
SCOPUS
Journal Title
Electrochimica Acta
Volume
204
Start Page
146
End Page
153
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/154535
DOI
10.1016/j.electacta.2016.04.064
ISSN
0013-4686
Abstract
Graphene, also referred as reduced graphene oxide (RGO) is prepared by chemical exfoliation method, which delivers specific capacitance of 77 and 40 F g (1) at 0.1 and 1.0 A g (1), respectively in aqueous electrolyte. In order to improve the specific capacitance and high power performance of RGO, composites of RGO are prepared with various carbonaceous 'spacer' materials such as acetylene black (AB), activated carbon (AC), multi-walled carbon nanotube (CNT) and carbon derived from polyaniline (C-PANI). Composites of RGO with spacer materials such as AB, AC and CNT is prepared by mechanically mixing RGO with the spacer materials; whereas, RGO composite with C-PANI is prepared by in situ method. These two different preparation methodologies are adopted to realise its effect on the physical and electrochemical characteristics of the composites. Morphological, X-ray diffraction and Raman data confirm the formation of mixture of few and multi -layered RGO stacks. Surface area analysis and morphological data show that the composite prepared by in situ method is beneficial in achieving higher specific surface area and improved mesoporosity. Specific capacitance of RGO and its composites obtained at 0.1 A g 1 decreased in the order: RGO/C-PANI (165 F g 1) > RGO/AC (121 F g 1) > RGO/AB (107 F g 1) > RGO/CNT (95 F g 1) > pristine RGO (77 F g 1). Capacitance retention of RGO and its composite electrodes (in percentage) at 1.0 Ag (1), in comparison with the value obtained at 0.1 Ag (1) decreased in the order: RGO/AB (84%)>RGO/CNT (75%) > RGO/AC (71%) > RGO/C-PANI (64%) > pristine RGO (52%).
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Dong Won photo

Kim, Dong Won
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE