Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Analysis of anomalous electrical conductivity and magnetic permeability effects using a frequency domain controlled-source electromagnetic method

Authors
Noh, KyuboOh, SeokminSeol, Soon JeeLee, Ki HaByun, Joong moo
Issue Date
Mar-2016
Publisher
OXFORD UNIV PRESS
Keywords
Numerical solutions; Electromagnetic theory; Magnetic and electrical properties
Citation
GEOPHYSICAL JOURNAL INTERNATIONAL, v.204, no.3, pp.1550 - 1564
Indexed
SCIE
SCOPUS
Journal Title
GEOPHYSICAL JOURNAL INTERNATIONAL
Volume
204
Number
3
Start Page
1550
End Page
1564
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/155018
DOI
10.1093/gji/ggv537
ISSN
0956-540X
Abstract
We present a series of processes for understanding and analysing controlled-source electromagnetic (CSEM) responses for a conductive and permeable earth. To realize the CSEM response, a new 3-D CSEM forward modelling algorithm based on an edge finite element method for both electrically conductive and magnetically permeable heterogeneities is developed. The algorithm shows highly accurate results in validation tests against a semi-analytic solution for stratified earth and an integral form of the scattered field. We describe the vector behaviour of an anomalous magnetic field originating from a conductive and permeable anomaly when the loop sources are deployed over a conductive half-space. The CSEM response of the conductive and permeable anomaly is classified into three effects originating from: conductivity perturbations, permeability perturbations and the coupling of these two effects. The separated individual results and the corresponding integral equation form of the anomalous field help to better understand the physical behaviour. We confirm the characteristic features of the CSEM response from the conductive and permeable anomaly, for example, (1) the general dominance of the induction effect in the out-of-phase response accompanied by a non-negligible magnetization effect from the magnetic anomaly in a conductive half-space and (2) the dominance of near frequency-independent magnetization effects in the in-phase response at relatively low frequencies and change in ruling part of the in-phase response into the induction effect as the frequency increases. We also demonstrate the effect of coupling mode and show that its maximum contribution is limited to a few per cent level of other two modes, induction and magnetization mode, even when the heterogeneity of our model is strong. In our synthetic survey, using examples of land-based profiling surveys of low induction number and intermediate regime, we find that the effect of magnetization can be used as an indicator of the existence of magnetic material. One important point to note from this study is the importance of accurate cancelling-out or estimation of free-space responses, which can mask the magnetic responses to imaging the varying magnetic property.
Files in This Item
There are no files associated with this item.
Appears in
Collections
서울 공과대학 > 서울 자원환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Byun, Joongmoo photo

Byun, Joongmoo
COLLEGE OF ENGINEERING (DEPARTMENT OF EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE