Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronicsopen access

Authors
Kim, JaekyunKim, Myung-GilKim, JaehyunJo, SanghoKang, JinguJo, Jeong-WanLee, WoobinHwang, ChahwanMoon, JuhyukYang, LinKim, Yun-HiNoh, Yong-YoungJaung, Jae YunKim, Yong-HoonPark, Sung Kyu
Issue Date
Sep-2015
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.5, pp.1 - 7
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
5
Start Page
1
End Page
7
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/156519
DOI
10.1038/srep14520
ISSN
2045-2322
Abstract
The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-mu m-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jaung, Jae Yun photo

Jaung, Jae Yun
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE