Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fabrication of high-performance composite electrodes composed of multiwalled carbon nanotubes and glycerol-doped poly(3,4-ethylenedioxythiophene):polystyrene sulfonate for use in organic devices

Authors
Yun, Dong-JinJeong, Yong JinRa, HyeminKim, Jung-MinAn, Tae KyuSeol, MinsuJang, JaeyoungPark, Chan EonRhee, Shi-WooChung, Dae Sung
Issue Date
Jul-2015
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v.3, no.28, pp.7325 - 7335
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY C
Volume
3
Number
28
Start Page
7325
End Page
7335
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/156817
DOI
10.1039/c5tc00882d
ISSN
2050-7526
Abstract
In this study, composite films composed of highly conductive multiwalled carbon nanotubes (MWCNTs) and poly(3,4-ethylenedioxythiophene) polymerized with poly(4-styrenesulfonate) (PEDOT:PSS) were fabricated via additional organic-compound doping. The effects of glycerol (GL) or dimethyl sulfoxide (DMSO) doping on the film properties, such as surface roughness, work function (Phi), and conductivity, were studied for both PEDOT: PSS and MWCNT/PEDOT: PSS composite systems. The interactive couplings between the PEDOT and PSS molecules became disordered upon doping with GL or DMSO, which altered the conjugated structure between the PEDOT and PSS chains. Therefore, the electrical conductivity of the PEDOT: PSS and MWCNT/PEDOT: PSS films was enhanced by the addition of GL or DMSO molecules. The GL-doped PEDOT: PSS (PEGL) and ultraviolet (UV)-oxidized MWCNT/PEDOT: PSS (0.2-UVGL) films exhibited comparable work functions (PEGL = 4.87 eV, 0.2-UVGL = 5.0 eV). They also had lower sheet resistances (R-s; PEGL = 806.7 +/- 50 Omega square(-1), 0.2-UVGL = 613 +/- 120 Omega square(-1)) as compared to those of the undoped PEDOT: PSS (Phi = 4.92 eV, R-s = 1.03 +/- 0.10 M Omega square(-1)) and MWCNT/PEDOT: PSS composites (Phi = 4.7 eV, R-s = 2184 +/- 244 Omega square (1)). Furthermore, because of these excellent electrical properties, the doped MWCNT/PEDOT: PSS films showed great potential as the source/drain electrode in an organic thin-film transistor and as the catalytic counter electrode in a dye-sensitized solar cell. In conclusion, devices with 0.2-UVGL electrodes performed better than the corresponding devices with other MWCNT/PEDOT: PSS composite electrodes and the device characteristics were comparable to that of standard devices with platinum/fluorine-doped tin oxide electrodes.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Jae young photo

Jang, Jae young
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE