Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries

Authors
Palanisamy, KowsalyaKim, YunokKim, HansuKim, Ji ManYoon, Won-Sub
Issue Date
Feb-2015
Publisher
ELSEVIER SCIENCE BV
Keywords
Molybdenum oxide; Graphene; Self-assembly; Hybrid nanostructure; Anode; Lithium ion battery
Citation
JOURNAL OF POWER SOURCES, v.275, pp.351 - 361
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF POWER SOURCES
Volume
275
Start Page
351
End Page
361
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/157963
DOI
10.1016/j.jpowsour.2014.11.001
ISSN
0378-7753
Abstract
Three dimensional (3D) porous self-assembled MoO2/graphene microspheres are successfully synthesized via microwave-assisted hydrothermal process in a short reaction time followed by thermal annealing. Such rationally designed multifunctional hybrid nanostructure is constructed from interconnected MoO2 nanoparticles (3-5 nm), which is self-assembled into ordered nanoporous microspheres via strong electrostatic attraction between graphene sheets and MoO2 nanoparticles. The MoO2/graphene hybrid structure delivers a high reversible capacity with significantly enhanced cycling stability (similar to 1300 mAh g(-1) after 80 cycles at C/10 rate) and excellent rate capability (913 and 390 mAh g(-1) at 2C and 5C rates, respectively), when used as an anode material. The microspheres are interconnected and well encapsulated by the flexible graphene sheets, which not only accommodates large volume change but also increases the electrical conductivity of the hybrid structure. Moreover, nanoporous voids present in the 3D framework facilitate effective electrolyte penetration and make a direct contact with the active MoO2 nanoparticles, thereby greatly enhancing lithium ion transport. The strategic combination of selfassembly, nanoporous voids, 3D network and intriguing properties of graphene sheets provides excellent electrochemical performance as anode materials for Lithium ion battery applications.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Han su photo

Kim, Han su
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE