Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Genetically Engineered Myoblast Sheet for Therapeutic Angiogenesis

Authors
Lee, JoanJun, IndongPark, Hyun-JiKang, Taek JinShin, HeungsooCho, Seung-Woo
Issue Date
Jan-2014
Publisher
AMER CHEMICAL SOC
Citation
BIOMACROMOLECULES, v.15, no.1, pp.361 - 372
Indexed
SCIE
SCOPUS
Journal Title
BIOMACROMOLECULES
Volume
15
Number
1
Start Page
361
End Page
372
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/160900
DOI
10.1021/bm401605f
ISSN
1525-7797
Abstract
Peripheral arterial disease is a common manifestation of systemic atherosclerosis, which results in more serious consequences of ischemic events in peripheral tissues such as the lower extremities. Cell therapy has been tested as a treatment for peripheral ischemia that functions by inducing angiogenesis in the ischemic region. However, the poor survival and engraftment of transplanted cells limit the efficacy of cell therapy. In order to overcome such challenges, we applied genetically engineered cell sheets using a cell-interactive and thermosensitive hydrogel and nonviral polymer nanoparticles. C2C12 myoblast sheets were formed on Tetronic-tyramine (Tet-TA)-RGD hydrogel prepared through a highly efficient and noncytotoxic enzymatic reaction. The myoblast sheets were then transfected with vascular endothelial growth factor (VEGF) plasmids using poly(beta-amino ester) nanoparticles to increase the angiogenic potential of the sheets. The transfection increased the VEGF expression and secretion from the C2C12 sheets. The enhanced angiogenic effect of the VEGF-transfected C2C12 sheets was confirmed using an in vitro capillary formation assay. More importantly, the transplantation of the VEGF-transfected C2C12 sheets promoted the formation of capillaries and arterioles in ischemic muscles, attenuated the muscle necrosis and fibrosis progressed by ischemia, and eventually prevented ischemic limb loss. In conclusion, the combination of cell sheet engineering and genetic modification can provide more effective treatment for therapeutic angiogenesis.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 생명공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Heung Soo photo

Shin, Heung Soo
COLLEGE OF ENGINEERING (DEPARTMENT OF BIOENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE