Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange

Authors
Yun, Dong-MinCho, Hyun-HeeJang, Jun-WonPark, Jae-Woo
Issue Date
Apr-2013
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Nano zero valent iron; Anodization; Titanium dioxide nanotube; Anodization; Direct hydride reduction
Citation
WATER RESEARCH, v.47, no.5, pp.1858 - 1866
Indexed
SCIE
SCOPUS
Journal Title
WATER RESEARCH
Volume
47
Number
5
Start Page
1858
End Page
1866
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/163067
DOI
10.1016/j.watres.2013.01.014
ISSN
0043-1354
Abstract
Here, we demonstrated that nano zero-valent iron (nZVI) impregnated onto self-organized TiO2 nanotube thin films exhibits both oxidation and reduction capacities in addition to the possible electron transfer from TiO2 to nZVI. The TiO2 nanotubes were synthesized by anodization of titanium foil in a two-electrode system. Amorphous TiO2 (amTiO(2)) nanotubes were annealed at 450 degrees C for 1 h to produce crystalline TiO2 (crTiO(2)) nanotubes. The nZVI particles were immobilized on the TiO2 array film by direct borohydride reduction. Field emission scanning electron microscopy (FE-SEM) analysis of the crystalline TiO2 nanotube with nZVI (nZVI/crTiO(2)) indicated that the nZVI particles with a mean particle diameter of 28.38 +/- 11.81 nm were uniformly distributed onto entire crTiO(2) nanotube surface with a mean pore diameter of 75.24 +/- 17.66 nm and a mean length of 40.07 mu m. Environmental applicability of our proposed nZVI/TiO2 nanotube thin films was tested for methyl orange (MO) degradation in the aqueous system with and without oxygen. Since oxygen could facilitate the nZVI oxidation and inhibit electron transfer from crTiO(2) to nZVI surface, MO degradation by nZVI/crTiO(2) in the presence of oxygen was significantly suppressed whereas nZVI/crTiO(2) in the absence of oxygen enhanced MO degradation. MO degradation rate by each sample without oxygen were in following order: nZVI/crTiO(2) (k(obs) = 0.311 min(-1)) > nZVI/amTiO(2) (k(obs) = 0.164 min(-1)) > crTiO(2) (k(obs) = 0.068 min(-1)). This result can be explained with a synergistic effect of the significant reduction by highly-dispersed nZVI particles on TiO2 nanotubes as well as the electron transfer from the conduction band of crTiO(2) to the nZVI on the crTiO(2) for the degradation of MO.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 건설환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jae Woo photo

Park, Jae Woo
COLLEGE OF ENGINEERING (DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE