Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Finite element simulations of dynamics of multivariant martensitic phase transitions based on Ginzburg-Landau theory

Authors
Cho, Joon-YeounIdesman, AlexanderLevitas, ValeryPark, Taehyo
Issue Date
Jul-2012
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Martensitic phase transitions; Finite elements; Phase-field approach; Microstructure
Citation
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, v.49, no.14, pp.1973 - 1992
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume
49
Number
14
Start Page
1973
End Page
1992
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/165164
DOI
10.1016/j.ijsolstr.2012.04.008
ISSN
0020-7683
Abstract
A finite element approach is suggested for the modeling of multivariant stress-induced martensitic phase transitions (PTs) in elastic materials at the nanoscale for the 2-D and 3-D cases, for quasi-static and dynamic formulations. The approach is based on the phase-field theory, which includes the Ginzburg-Landau equations with an advanced thermodynamic potential that captures the main features of macroscopic stress-strain curves. The model consists of a coupled system of the Ginzburg-Landau equations and the static or dynamic elasticity equations, and it describes evolution of distributions of austenite and different martensitic variants in terms of corresponding order parameters. The suggested explicit finite element algorithm allows decoupling of the Ginzburg-Landau and elasticity equations for small time increments. Based on the developed phase-field approach, the simulation of the microstructure evolution for cubic-tetragonal martensitic PT in a NiAl alloy is presented for quasi-statics (i.e., without inertial forces) and dynamic formulations in the 2-D and 3-D cases. The numerical results show the significant influence of inertial effects on microstructure evolution in single- and polycrystalline samples, even for the traditional problem of relaxation of initial perturbations to stationary microstructure.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 건설환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Tae hyo photo

Park, Tae hyo
서울 공과대학 (서울 건설환경공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE