Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effects of the imbibitional flow of steam on oil recovery from carbonate reservoirs

Authors
Kim, J.Park, H.Seo, J.Lee, Kun SangSung, W.
Issue Date
Apr-2012
Keywords
Capillary imbibition; Carbonate reservoir; Convection; Heat transfer; Wettability alteration
Citation
Geosystem Engineering, v.15, no.1, pp.19 - 26
Indexed
SCOPUS
KCI
OTHER
Journal Title
Geosystem Engineering
Volume
15
Number
1
Start Page
19
End Page
26
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/165903
DOI
10.1080/12269328.2012.674427
ISSN
1226-9328
Abstract
Carbonate reservoirs contain over 90% of oil within an extremely tight matrix and are usually oil-wet, which makes them unfavorable for oil production. During water injection, water does not imbibe into the matrix, but flows preferentially through the fractures, resulting in very low oil recoveries. It is proposed that steam or hot water is injected, inducing a wettability change and rendering the matrix water-wet. Then, water can move into the matrix by capillary imbibition. From this perspective, it is crucial to analyze the contributions of conductive and convective heat transfer during steam injection. The mechanism of wettability changes is accounted for when steam is injected into carbonate reservoirs. The effect of strong capillary pressure in a tight matrix on the oil recovery is also examined. The purpose of this study is to evaluate the rate of conduction and convection and to determine optimum conditions that maximize heat transfer and wettability alteration in the tight matrix. An analytical solution and numerical results were compared for heat conduction within the matrix during steam injection. Investigations were also performed to determine the optimum injection time, steam injection pressure and steam quality required to make the carbonate matrix water-wet and maximize oil recovery. The results from this study show that convectional flow might be the most important heat-transfer mechanism to shorten the matrix wettability converting time. Based on analysis of the thermal process, an optimum steam injection strategy can be designed for a given matrix permeability and fracture spacing.
Files in This Item
There are no files associated with this item.
Appears in
Collections
서울 공과대학 > 서울 자원환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kun Sang photo

Lee, Kun Sang
COLLEGE OF ENGINEERING (DEPARTMENT OF EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE