Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

EWB control based on the estimated clamping force

Full metadata record
DC Field Value Language
dc.contributor.authorHan, K.-
dc.contributor.authorHUH, KUN SOO-
dc.contributor.authorHwang, W.-
dc.contributor.authorKim, M.-
dc.contributor.authorKim, D.-
dc.date.accessioned2022-07-16T17:29:11Z-
dc.date.available2022-07-16T17:29:11Z-
dc.date.created2021-05-13-
dc.date.issued2012-
dc.identifier.issn0148-7191-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/166681-
dc.description.abstractThis paper focuses on clamping force control of electronic wedge brakes without additional sensors for cost-effectiveness and system simplicity. Brake-by-wire systems can be used for enhanced, safe braking of intelligent and environmentally friendly vehicles such as gas-electric hybrid and electric vehicles. For implementation of the electronic wedge brake, the clamping force should be controlled properly even though model uncertainty and parameter variations exist due to the environment or system characteristics changes, e.g., temperature variations, pad wear, and nonlinear friction. In this paper, the electronic wedge brake is modeled to include the wedge dynamics as well as the nonlinearities such as backlash and friction in mechanical connections and clearance between the brake disk and pad. An on-line status monitoring algorithm using the simplified mathematical models is designed to estimate the mechanical system parameters. Based on the mechanical parameters estimated initially and the estimated clamping force, a sliding-mode control algorithm is proposed to achieve the robust control performance. The performance of the proposed monitoring and control algorithm is verified through simulations using Matlab/Simulink. Additionally, the proposed algorithm is validated experimentally using a hardware-in-the-loop simulation test bench equipped with the prototype electromechanical brake and electronic wedge brake.-
dc.language영어-
dc.language.isoen-
dc.publisherSAE International-
dc.titleEWB control based on the estimated clamping force-
dc.typeArticle-
dc.contributor.affiliatedAuthorHUH, KUN SOO-
dc.identifier.doi10.4271/2012-01-1797-
dc.identifier.scopusid2-s2.0-84881213314-
dc.identifier.bibliographicCitationSAE Technical Papers, v.7-
dc.relation.isPartOfSAE Technical Papers-
dc.citation.titleSAE Technical Papers-
dc.citation.volume7-
dc.type.rimsART-
dc.type.docTypeConference Paper-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusClamping devices-
dc.subject.keywordPlusCost effectiveness-
dc.subject.keywordPlusFriction materials-
dc.subject.keywordPlusMATLAB-
dc.subject.keywordPlusParameter estimation-
dc.subject.keywordPlusRobust control-
dc.subject.keywordPlusSliding mode control-
dc.subject.keywordPlusTraction (friction)-
dc.subject.keywordPlusUncertainty analysis-
dc.subject.keywordPlusBrake-by-wire systems-
dc.subject.keywordPlusElectromechanical brake-
dc.subject.keywordPlusElectronic wedge brakes-
dc.subject.keywordPlusEnvironmentally friendly vehicles-
dc.subject.keywordPlusMechanical connections-
dc.subject.keywordPlusMonitoring and control-
dc.subject.keywordPlusSimplified mathematical model-
dc.subject.keywordPlusSystem characteristics-
dc.subject.keywordPlusBrakes-
dc.identifier.urlhttps://saemobilus.sae.org/content/2012-01-1797/-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 미래자동차공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Huh, Kunsoo photo

Huh, Kunsoo
COLLEGE OF ENGINEERING (DEPARTMENT OF AUTOMOTIVE ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE