Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mode shifting shape memory polymer and hydrogel composite fiber actuators for soft robots

Authors
Choi, Jung GiSpinks, Geoffrey M.Kim, Seon Jeong
Issue Date
Aug-2022
Publisher
ELSEVIER SCIENCE SA
Keywords
Actuators; Hydrogel; Shape memory; Soft robots
Citation
SENSORS AND ACTUATORS A-PHYSICAL, v.342, pp.1 - 7
Indexed
SCIE
SCOPUS
Journal Title
SENSORS AND ACTUATORS A-PHYSICAL
Volume
342
Start Page
1
End Page
7
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/170011
DOI
10.1016/j.sna.2022.113619
ISSN
0924-4247
Abstract
Soft robotics is a promising new field offering robot systems that mimic the versatility and complexity of movement and propulsion seen in natural organisms. Such systems require complex actuation including length expansion/contraction, bending and torsion. To date, such actuators have been configured individually. Here, it is shown that composite fibers formed from a shape memory polymer and a thermo-sensitive hydrogel could be configured into any one of the tensile, torsional and flexural actuators. Furthermore, the programmed mode of actuation could be thermally erased and the same fiber re-programmed into a different type of actuator. The fibers were prepared from poly(N-isopropylacrylamide) with polycaprolactone and the fiber composition was tuned to optimize both shape fixity and the degree of actuation. The fibers could be programmed by heating to 60 degrees C and then cooled under tensile, flexural or torsional load. The fiber was then conditioned by immersing in water at room temperature which induced swelling of the hydrogel phase and shape deformation. The preprogrammed shape of the fiber was then restored when the fiber was heated at 35 degrees C in water to de-swell the thermo-sensitive poly(N-isopropylacrylamide) hydrogel. Reversible actuation was observed through multiple cycles of heating and cooling. The optimized fibers generated torsional strokes of 10 turn/m; bending curvature changes of 0.4 mm-1 or tensile strokes of up to 92%. The composite fibers offer a convenient means for generating a variety of different actuation types for soft robotics.
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seon Jeong photo

Kim, Seon Jeong
COLLEGE OF ENGINEERING (서울 바이오메디컬공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE