Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries

Authors
Park, Geon-TaeRyu, Hoon-HeeNoh, Tae-ChongKang, Gyeong-CheolSun, Yang-Kook
Issue Date
Jan-2022
Publisher
ELSEVIER SCI LTD
Keywords
Ni-rich layered cathode; Concentration gradient cathode; Microstructural optimization; Long-life battery
Citation
MATERIALS TODAY, v.52, pp.9 - 18
Indexed
SCIE
SCOPUS
Journal Title
MATERIALS TODAY
Volume
52
Start Page
9
End Page
18
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/171616
DOI
10.1016/j.mattod.2021.11.018
ISSN
1369-7021
Abstract
Herein, a comprehensive investigation of the effect of calcination temperature on the physicochemical properties of full-concentration-gradient Li[Ni0.78Co0.10Mn0.12]O-2 (FCG NCM78) and the electrochemical performance of FCG NCM78 cathodes was conducted. The electrochemical performance of the FCG NCM78 cathode was significantly influenced by the physical properties of FCG NCM78, such as crystallinity, compositional gradient, and morphology. The crystallinity of FCG NCM78 increased with increasing calcination temperature; however, the compositional gradient and radial alignment of rod shaped primary particles increasingly disappeared at calcination temperatures exceeding the optimal calcination temperature. FCG NCM78 calcined at the optimal calcination temperature retained the morphological texture of its precursor and demonstrated high crystallinity; the resulting cathode exhibited remarkable cycling stability, thereby retaining 86.3% of its initial capacity after 4000 cycles, and superior rate capability due to the availability of nearly straight diffusion paths for Li-ion transport across adjacent primary particles. In contrast, excessively coarsened FCG NCM78 cathode particles, which are obtained at high calcination temperatures, develop permanent microcracks during cycling, thereby facilitating severe structural damage of the cathode material by parasitic surface reactions and the rapid deterioration of the solid electrolyte interphase layer on the graphite anode surface due to the crossover of dissolved transition-metal ions. Therefore, for superior electrochemical performance, the physicochemical properties of FCG cathode materials should be carefully optimized by controlling the calcination process.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sun, Yang Kook photo

Sun, Yang Kook
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE