많은 통행량과 조명 변화에 강인한 빠른 배경 모델링 방법A Fast Background Subtraction Method Robust to High Traffic and Rapid Illumination Changes
- Other Titles
- A Fast Background Subtraction Method Robust to High Traffic and Rapid Illumination Changes
- Authors
- 이광국; 김재준; 김회율
- Issue Date
- Mar-2010
- Publisher
- 한국멀티미디어학회
- Keywords
- Video Surveillance(영상 감시); Background Subtraction(배경 제거); Foreground Detection(전경 검출); Video Surveillance(영상 감시); Background Subtraction(배경 제거); Foreground Detection(전경 검출)
- Citation
- 멀티미디어학회논문지, v.13, no.3, pp.417 - 429
- Indexed
- KCI
- Journal Title
- 멀티미디어학회논문지
- Volume
- 13
- Number
- 3
- Start Page
- 417
- End Page
- 429
- URI
- https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/175257
- ISSN
- 1229-7771
- Abstract
- 배경 제거를 위한 많은 연구가 있어왔음에도 기존의 방법들을 실제 환경에 효과적으로 적용하기에는 아직도 많은 어려움이 있다. 본 논문에서는 배경 제거를 실제 환경에 적용하면서 만나게 되는 다양한 문제들을 해결하기 위해 기존의 가우시안 혼합 모델 방법을 개선하는 배경 제거 방법을 제안한다. 첫째로 제안한 방법은 낮은 계산량을 얻기 위하여 고정 소수점 연산을 이용하였다. 배경 모델링 과정은 변수들의 높은 정밀도를 요구하지 않기 때문에 제안한 방법에서는 고정 소수점 변수를 이용함으로서 정확도를 유지한 채 연산 속도를 크게 향상시킬 수 있었다. 두 번째로 보행자들의 높은 통행량 하에서 흔히 발생되는 전경 객체가 배경으로 학습되는 문제를 피하기 위하여 각 화소의 정적인 정도를 이용하여 배경 모델의 학습 속도를 동적으로 조절하였다. 즉 최근 화소 값에 큰 차이가 발생한 화소들은 배경 영역이 아닐 가능성이 높으므로, 이에 대해 낮은 학습 비율을 적용함으로써 높은 통행량을 보이는 영상에서도 유효한 배경 모델을 유지하는 것이 가능했다. 마지막으로 영상의 빠른 밝기값 변화에 대응하기 위하여 연속한 두 프레임 간의 밝기 변화를 선형 변환으로 추정하였으며, 훈련된 배경 모델을 이 선형 변환에 의해 직접적으로 변환시켜 주었다. 제안한 고정 소수점 연산에 의해 기존의 가우시안 혼합 배경 모델링 방법을 구현한 결과 배경 제거에 기존 방법의 약 30%의 연산시간 만을 필요로 하였다. 또한 제안한 방법을 실제 환경의 영상에 적용한 결과 기존의 배경 제거 방법에 비해 검출률이 약 20% 향상되었으며, 오검률은 5~15% 가량 낮아지는 것을 확인하였다.
- Files in This Item
-
Go to Link
- Appears in
Collections - 서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.