Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Path-percolation Modeling of the Electrical Property Variations with Statistical Procedures in Spatially-disordered Inhomogeneous Media

Authors
Jung, Hye-MiChoi, WongyuUm, Sukkee
Issue Date
Feb-2010
Publisher
KOREAN PHYSICAL SOC
Keywords
Path percolation; Electrical property; Statistical procedures; Inhomogeneous media
Citation
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, v.56, no.2, pp.591 - 597
Indexed
SCIE
SCOPUS
KCI
Journal Title
JOURNAL OF THE KOREAN PHYSICAL SOCIETY
Volume
56
Number
2
Start Page
591
End Page
597
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/175485
DOI
10.3938/jkps.56.591
ISSN
0374-4884
Abstract
A current-path percolation model has been developed to simulate the electrical property variations ill spatially-disordered inhomogeneous media by establishing a computational path determination scheme. i.e., a cluster labeling process. This scheme eliminates the necessity to estimate the bond resistance at lattice edges. Subsequently, an active clustering process provides more accurate effective electrical resistance values than both the effective medium approximation (EMA) and the Kirkpatrick algorithm. We apply the present model to a solid thin film mixture of temperature-dependent resistive materials. The computational results agree well with experimental data for the effective resistance of pure phases Of VO(2) in the literature. Results show that the electrical resistance Of VO(2) thin films is rather strongly affected by the micro- or the nano-structural configurations of the conductive materials of the thin films. It is expected that current-path percolation modeling combined with a cluster labeling process call be applied to investigating the effective electrical properties of conductive materials and call be utilized as a reverse engineering tool to tailor the micro- or the nano-structural properties of conductive materials.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher UM, Suk kee photo

UM, Suk kee
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE