Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Thermal Sensor Allocation and Placement for Reconfigurable Systems

Authors
Lee, ByunghyunChung, Ki-SeokKoo, BontaeEum, Nak-WoongKim, Taewhan
Issue Date
Aug-2009
Publisher
ASSOC COMPUTING MACHINERY
Keywords
Algorithms; Design; Reliability; Thermal sensor; optimal placement; unate-covering problem; reconfigurable system
Citation
ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, v.14, no.4, pp.1 - 23
Indexed
SCIE
SCOPUS
Journal Title
ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS
Volume
14
Number
4
Start Page
1
End Page
23
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/176432
DOI
10.1145/1562514.1562518
ISSN
1084-4309
Abstract
A dynamic monitoring of thermal behavior of hardware resources using thermal sensors is very important to maintain the operation of systems safe and reliable. This article addresses the problem of thermal sensor allocation and placement for reconfigurable systems. For programmable logic arrays, the degree of the use of hardware resources in the systems highly depends on the target application to be implemented, making the allocation of thermal sensors at the manufacturing stage inadequate (or too costly if implemented) due to the unpredictable thermal profile. This means that the thermal sensor allocation could be processed at the time when the reconfigurable logic is implemented (i.e., at the post manufacturing stage). This work proposes an effective solution to the problem of thermal sensor allocation and placement at the post-manufacturing stage. Specifically, we define the Sensor Allocation and Placement Problem (SAPP), and propose a solution which formulates SAPP into the Unate-Covering Problem (UCP) and solves it optimally. Also we combine SAPP with temperature correlation to reduce required sensors more aggressively and propose a solution by applying UCP again. We then provide an extended solution to handle a practical design issue where the hardware resources for the sensor implementation on specific array locations have already been used up by the application logic. Experimental results using MCNC benchmarks show that our proposed technique uses 62.4% and 19.7% less number of sensors to monitor hotspots on the average than that used by the grid-based and the bisection-based approaches while the overhead of auxiliary circuitry is minimized, respectively.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chung, Ki Seok photo

Chung, Ki Seok
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE