Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Comparative study of self-heating effect on electron mobility in nano-scale strained silicon-on-insulator and strained silicon grown on relaxed SiGe-on-insulator n-metal-oxide-semiconductor field-effect transistors

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Seong-Je-
dc.contributor.authorShim, Tae-Hun-
dc.contributor.authorChoi, Ki-Ryoung-
dc.contributor.authorPark, Jea-Gun-
dc.date.accessioned2022-12-20T23:01:44Z-
dc.date.available2022-12-20T23:01:44Z-
dc.date.created2022-08-26-
dc.date.issued2009-03-
dc.identifier.issn0268-1242-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/177143-
dc.description.abstractFrom the viewpoint of the silicon thickness limit for mobility enhancement in a strained Si channel, we investigated the difference in the self-heating effect on electron mobility between strained silicon-on-insulator (sSOI) and strained Si grown on relaxed SiGe-on-insulator (epsilon-Si SGOI) n-metal-oxide-semiconductor field-effect transistors (MOSFETs) as a function of silicon thickness. We found, for the first time, by numerical simulation that when considered with the presence of self-heating in the silicon thickness range from 5 to 10 nm, the reduction in the mobility enhancement ratio of sSOI n-MOSFETs is less than that of epsilon-Si SGOI n-MOSFETs by numerical simulation. In addition, we confirmed that the quantum size effect, occurring at the peak mobility value of a 3 nm silicon thickness, disappeared in sSOI n-MOSFETs but was suppressed in epsilon-Si SGOI n-MOSFETs. Therefore, we propose that an sSOI n-MOSFET is a more promising device than a epsilon-Si SGOI n-MOSFET for high-performance devices with a design rule of less than 45 nm.-
dc.language영어-
dc.language.isoen-
dc.publisherIOP PUBLISHING LTD-
dc.titleComparative study of self-heating effect on electron mobility in nano-scale strained silicon-on-insulator and strained silicon grown on relaxed SiGe-on-insulator n-metal-oxide-semiconductor field-effect transistors-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Jea-Gun-
dc.identifier.doi10.1088/0268-1242/24/3/035014-
dc.identifier.scopusid2-s2.0-64549144218-
dc.identifier.wosid000263676900015-
dc.identifier.bibliographicCitationSEMICONDUCTOR SCIENCE AND TECHNOLOGY, v.24, no.3, pp.1 - 6-
dc.relation.isPartOfSEMICONDUCTOR SCIENCE AND TECHNOLOGY-
dc.citation.titleSEMICONDUCTOR SCIENCE AND TECHNOLOGY-
dc.citation.volume24-
dc.citation.number3-
dc.citation.startPage1-
dc.citation.endPage6-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusBiCMOS technology-
dc.subject.keywordPlusComputer simulation-
dc.subject.keywordPlusDielectric devices-
dc.subject.keywordPlusElectric conductivity-
dc.subject.keywordPlusElectron mobility-
dc.subject.keywordPlusField effect transistors-
dc.subject.keywordPlusHeating-
dc.subject.keywordPlusIon beams-
dc.subject.keywordPlusMicrosensors-
dc.subject.keywordPlusMOS devices-
dc.subject.keywordPlusNonmetals-
dc.subject.keywordPlusSemiconducting germanium compounds-
dc.subject.keywordPlusSemiconducting silicon-
dc.subject.keywordPlusSemiconducting silicon compounds-
dc.subject.keywordPlusSemiconductor insulator boundaries-
dc.subject.keywordPlusSilicon-
dc.subject.keywordPlusSilicon alloys-
dc.subject.keywordPlusSilicon on insulator technology-
dc.subject.keywordPlusSpurious signal noise-
dc.subject.keywordPlusComparative studies-
dc.subject.keywordPlusDesign rules-
dc.subject.keywordPlusHigh-performance devices-
dc.subject.keywordPlusMetal-oxide-semiconductor field-effect transistors-
dc.subject.keywordPlusMobility enhancements-
dc.subject.keywordPlusn-MOSFET-
dc.subject.keywordPlusN-mosfets-
dc.subject.keywordPlusNano-scale-
dc.subject.keywordPlusNumerical simulations-
dc.subject.keywordPlusPeak mobilities-
dc.subject.keywordPlusQuantum size effects-
dc.subject.keywordPlusRelaxed sige on insulators-
dc.subject.keywordPlusSelf-heating-
dc.subject.keywordPlusSelf-heating effects-
dc.subject.keywordPlusSilicon thickness-
dc.subject.keywordPlusStrained Si channels-
dc.subject.keywordPlusStrained silicon on insulators-
dc.subject.keywordPlusStrained silicons-
dc.subject.keywordPlusStrained-Si-
dc.subject.keywordPlusMOSFET devices-
dc.identifier.urlhttps://iopscience.iop.org/article/10.1088/0268-1242/24/3/035014-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jea  Gun photo

Park, Jea Gun
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE