Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Macroscopic analysis of characteristic water transport phenomena in polymer electrolyte fuel cells

Authors
Jung, Hye-MiLee, Kwan-SooUm, Sukkee
Issue Date
Apr-2008
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
water transport; polymer electrolyte fuel cells; anode water loss; cathode flooding; water equilibrium
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.33, no.8, pp.2073 - 2086
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume
33
Number
8
Start Page
2073
End Page
2086
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/178806
DOI
10.1016/j.ijhydene.2008.02.024
ISSN
0360-3199
Abstract
Comprehensive analytical and numerical analyses were performed, focusing on anode water loss, cathode flooding, and wnter equilibrium for polymer electrolyte fuel cells. General features of water transport as a function of membrane thickness and current density were presented to illustrate the net effect of back-diffusion of water from the cathode to anode over a polymer electrolyte fuel cell domain. First, two-dimensional numerical simulation were performed, showing that the difference in molar concentration of water at the channel outlet is widened as the operating current density increases with a thin membrane (Nafion (R) 111), which was verified by Dong et al. [Distributed performance of polymer electrolyte fuel cells under low-humidity conditions. J Electrochem Soc 2005; 152: A2114-22]. Then, analytical solutions were compared with computational results in predicting those characteristics of water transport phenomena. It was theoretically estimated that the high pressure operation of fuel cells expedites water condensing and results in shorter anode water loss and cathode flooding locations. In this study, it was also found that a thin membrane (Nafion (R) 111) facilitates water transport in the through-membrane direction and therefore water concentration at the anode and cathode channel outlets reaches an equilibrium state particularly at low operating current densities. Moreover, the difference in the anode water concentration between Nafion (R) 111 and Nafion (R) 115 membranes becomes intensified in the in-plane direction under the same water production condition, while the cathode water concentration profiles remains almost same.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher UM, Suk kee photo

UM, Suk kee
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE