Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Structure and properties liquid crystal polymer and poly < ethylene 2,6-naphthalate > blend fibers of thermotropic

Authors
Kim, Seong YunKim, Jun YoungKim, Seong Hun
Issue Date
Feb-2008
Publisher
JOHN WILEY & SONS LTD
Keywords
polyesters; liquid crystalline polymers; melt spinning; fiber; annealing
Citation
POLYMER INTERNATIONAL, v.57, no.2, pp.378 - 384
Indexed
SCIE
SCOPUS
Journal Title
POLYMER INTERNATIONAL
Volume
57
Number
2
Start Page
378
End Page
384
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/178991
DOI
10.1002/pi.2372
ISSN
0959-8103
Abstract
BACKGROUND: The melt blending of thermotropic liquid crystal polymers (TLCPs) using conventional thermoplastics has attracted much attention due to the improved strength and tensile modulus of the resulting polymer composites. Moreover, because of their low melt viscosity, the addition of small amounts of TLCPs can reduce the melt viscosity of polymer blends, thereby enhancing the processability. RESULTS: In this study, TLCP/poly(ethylene 2,6-naphthalate) (PEN) blend fibers were prepared by melt blending and melt spinning to improve fiber performance and processability. The relation between the structure and the mechanical properties of TLCP/PEN blend fibers and the effect of annealing on these properties were also investigated. The mechanical properties of the blend fibers were improved by increasing the spinning speed and by adding TLCP. These properties of the blend fibers were also improved by annealing. The tensile strength of TLCP5/PEN spun at a spinning speed of 2.0 km h(-1) and annealed at 235 degrees C for 2 h was about three times higher than that of TLCP5/PEN spun at a spinning speed of 0.5km h(-1). The double melting behavior observed in the annealed fibers depended on the annealing temperature and time. CONCLUSION: The improvement of the mechanical properties of the blend fibers with spinning speed, by adding TLCP and by annealing was attributed to an increase in crystallite size, an increase in the degree of crystallinity and an improvement in crystal perfection. The double melting behavior was influenced by the distribution in lamella thickness that occurred because of a melt-reorganization process during differential scanning calorimetry scans.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Seong Hun photo

KIM, Seong Hun
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE