Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

TGO growth behavior with thermal fatigue and its effect on fracture behavior of thermal barrier coatings

Authors
Kwon, Jae-YoungJang, Hyung-JunJung, Yeon-GilPaik, Ungyu
Issue Date
Jan-2006
Publisher
TRANS TECH PUBLICATIONS LTD
Keywords
thermal barrier coating; TGO; bonding strength; thermal fatigue; fracture behavior
Citation
ECO-MATERIALS PROCESSING & DESIGN VII, v.510-511, pp.454 - 457
Indexed
SCIE
SCOPUS
Journal Title
ECO-MATERIALS PROCESSING & DESIGN VII
Volume
510-511
Start Page
454
End Page
457
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/181868
DOI
10.4028/www.scientific.net/MSF.510-511.454
ISSN
0255-5476
Abstract
Growth behavior of thermally grown oxide (TGO) layer with thermal fatigue condition in thermal barrier coatings (TBCs) was investigated, including its effect on fracture behavior of TBCs and bonding strength of top coat. The formation of TGO layer was influenced by both temperature and time exposed. However, the TGO thickness was independent on the bond coat thickness (80, 140, and 280 mu m) and the preparing method (APS and HVOF methods) of the bond coat. In Hertzian indentation tests for the TBCs before thermal fatigue, the TBCs with the bond coat prepared by APS showed fracture and/or delamination in regions of the top coat near to the interface, whereas the TBCs prepared by HVOF indicated cracks and fracture at the interface. After thermal fatigue, the fracture path passed along the TGO layer without any cracks created from Hertzian indentation within the top coat in both cases. The bonding strength of the top coat measured by adhesion tests shows lower values for the TBCs with the HVOF bond coat than those with the APS bond coat before thermal fatigue. However, the values are similar to each other after thermal fatigue. This result is attributed to the fracture path of the TBCs, depending on the TGO formation.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Paik, Ungyu photo

Paik, Ungyu
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE