Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Oxide nanoparticle-based fabrication and optical properties of Cu(In-1 (-) Ga-x(x))S-2 absorber layer for solar cells

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Yo-Min-
dc.contributor.authorLee, Young-In-
dc.contributor.authorKim, Bum-Sung-
dc.contributor.authorChoa, Yong-Ho-
dc.date.accessioned2022-12-22T02:01:33Z-
dc.date.available2022-12-22T02:01:33Z-
dc.date.created2021-01-21-
dc.date.issued2013-11-
dc.identifier.issn0040-6090-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/182035-
dc.description.abstractThe compound Cu(In-1 (-) Ga-x(x))S-2 (CIGS) was synthesized using copper oxide, indium oxide and gallium oxide mixture (CIGO) nanoparticles using salt-assisted ultrasonic spray pyrolysis (SAUSP). Under this method, CIGS can be produced without the complicated restrictions of a vacuum and an inert atmosphere. The band gap of CIGS can be controlled by introducing the desired stoichiometric quantities of starting materials. In order to synthesize CIGO nanoparticles, various NaCl/precursor ratios were used to accomplish the SAUSP process and ultimately monodisperse CIGO nanoparticles with average particle size of 9 nm without hard agglomeration were obtained. Subsequently, the CIGO nanoparticles were sulfurized to form the CIGS in H2S/Ar atmosphere at 500 degrees C. The CIGS obtained in the present study has the various band gap ranging from 1.67 to 2.34 eV depending on the Ga / (In + Ga) ratio, and those band gap correspond to the respective bulk materials. (C) 2013 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier Sequoia-
dc.titleOxide nanoparticle-based fabrication and optical properties of Cu(In-1 (-) Ga-x(x))S-2 absorber layer for solar cells-
dc.typeArticle-
dc.contributor.affiliatedAuthorChoa, Yong-Ho-
dc.identifier.doi10.1016/j.tsf.2013.05.129-
dc.identifier.scopusid2-s2.0-84885317242-
dc.identifier.wosid000325092000064-
dc.identifier.bibliographicCitationThin Solid Films, v.546, pp.312 - 316-
dc.relation.isPartOfThin Solid Films-
dc.citation.titleThin Solid Films-
dc.citation.volume546-
dc.citation.startPage312-
dc.citation.endPage316-
dc.type.rimsART-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusCHALCOPYRITE SEMICONDUCTORS-
dc.subject.keywordPlusNANOCRYSTAL INKS-
dc.subject.keywordPlusCUINS2-
dc.subject.keywordPlusCU(IN,GA)SE-2-
dc.subject.keywordPlusPHOTOVOLTAICS-
dc.subject.keywordPlusSELENIZATION-
dc.subject.keywordAuthorCu(In-1 (-) Ga-x(x))S-2-
dc.subject.keywordAuthorCIGS-
dc.subject.keywordAuthorSalt-assisted ultrasonic spray pyrolysis-
dc.subject.keywordAuthorBand gap-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0040609013009917?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE