Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Task space control considering passive muscle stiffness for redundant robotic arms

Authors
Bae, Ji-HunPark, Jae-HanOh, YonghwanKim, DoikChoi, YoungjinYang, Woosung
Issue Date
Apr-2015
Publisher
Springer Verlag
Keywords
Robot arm control; Virtual spring damper; Passive muscle stiffness; Redundant robots; Compliant behavior; Task space control
Citation
Intelligent Service Robotics, v.8, no.2, pp.93 - 104
Indexed
SCIE
SCOPUS
Journal Title
Intelligent Service Robotics
Volume
8
Number
2
Start Page
93
End Page
104
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/182069
DOI
10.1007/s11370-015-0165-2
ISSN
1861-2776
Abstract
In service robotics, control systems allowing for skillful manipulation and dexterity constitute one of the most valuable technologies. Recently, control approaches inspired by humans or animals have attracted widespread attention, due to their merit of allowing various tasks to be performed naturally without precisely calculating their behaviors. This work, thus, focuses on the embodiment of a notable control method for a multi-DOF robotic system considering a human physical activity. In contrast to the traditional approaches, in the proposed control, the linear superposition of four control terms is exploited. These consist of joint spring-damping and virtual spring-damper terms in the joint and Cartesian spaces, respectively. Remarkably, the joint spring term is newly designed for the consideration of the simple passive muscle stiffness effect under gravity to guarantee motion repeatability and avoid the problem of ill-posedness. In the experiment, various abilities with respect to position control and compliant behavior are exposed through a real robot. Additional experiments are performed for the verification of the motion repeatability and energy-efficient motion under DOF redundancy.
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE