Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Extraordinary Field Emission of Diamond Film Developed on a Graphite Substrate by Microwave Plasma Jet Chemical Vapor Depositionopen access

Authors
Hsu, Hua-YiYen, Jing-ShyangLin, Chun-YuLiu, Chi-WenAranganadin, KaviyaLin, Chii-RueySun, Jwo-ShiunLin, Ming-Chieh
Issue Date
Feb-2023
Publisher
MDPI
Keywords
MPJCVD; diamond film fabrication; plasma; field emission
Citation
APPLIED SCIENCES-BASEL, v.13, no.4, pp.1 - 17
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SCIENCES-BASEL
Volume
13
Number
4
Start Page
1
End Page
17
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/184907
DOI
10.3390/app13042531
Abstract
This work reports both numerical and experimental studies of the reconditioning of a microwave plasma jet chemical vapor deposition (MPJCVD) system for the growth of diamond film. A three-dimensional plasma fluid model is constructed for investigating and conditioning the MPJCVD system and optimizing its operating conditions. The methodology solves electromagnetic wave and plasma dynamics self-consistently using an adaptive finite element method as implemented in COMSOL Multiphysics. The whole system has been modeled under varying parameters, including the reactor geometry, microwave power, and working gas pressure. Using an operating condition identical to the optimized simulation results, the MPJCVD system successfully fabricates a diamond-thin film on a graphite substrate. The SEM image reveals the presence of a diamond film uniformly distributed with particles of a size of similar to 1 mu m. The field emission from the diamond film grown from our homemade MPJCVD system on the graphite substrate presents extraordinary properties, i.e., extremely high current density and relatively low turn-on voltage. The turn-on electric field observed could be as low as similar to 4 V/mu m. This developed model provides valuable physical insights into the MPJCVD system, which guided performance improvements. The work may find applications in surface hardening and provide a better cold cathode for field electron emission.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 전기공학전공 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lin, Ming Chieh photo

Lin, Ming Chieh
COLLEGE OF ENGINEERING (MAJOR IN ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE