Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Explainable Deep Learning for Supervised Seismic Facies Classification Using Intrinsic Method

Authors
Noh, KyuboKim, DowanByun, Joongmoo
Issue Date
Jan-2023
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Deep learning (DL); explainable AI; interpretable machine learning; reservoir characterization; seismic exploration; seismic facies classification
Citation
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, v.61, pp.1 - 11
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume
61
Start Page
1
End Page
11
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/184997
DOI
10.1109/TGRS.2023.3236500
ISSN
0196-2892
Abstract
Deep-learning (DL) techniques have been proposed to solve geophysical seismic facies classification problems without introducing the subjectivity of human interpreters' decisions. However, such DL algorithms are "black boxes " by nature, and the underlying basis can be hardly interpreted. Subjectivity is therefore often introduced during the quality control process, and any interpretation of DL models can become an important source of information. To provide a such degree of interpretation and retain a higher level of human intervention, the development and application of explainable DL methods have been explored. To showcase the usefulness of such methods in the field of geoscience, we utilize a prototype-based neural network (NN) for the seismic facies classification problem. The "prototype " vectors, jointly learned to have the stereotypical qualities of a certain label, form a set of representative samples. The interpretable component thereby transforms "black boxes " into "gray boxes. " We demonstrate how prototypes can be used to explain NN methods by directly inspecting key functional components. We describe substantial explanations in three ways of examining: 1) prototypes' corresponding input-output pairs; 2) the values generated at the specific explainable layer; and 3) the numerical structure of specific shallow layers located between the interpretable latent prototype layer and an output layer. Most importantly, the series of interpretations shows how geophysical knowledge can be used to understand the actual function of the seismic facies classifier and therefore help the DL's quality control process. The method is applicable to many geoscientific classification problems when in-depth interpretations of NN classifiers are required.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 자원환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Byun, Joongmoo photo

Byun, Joongmoo
COLLEGE OF ENGINEERING (DEPARTMENT OF EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE