Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Room-Temperature-Processable Highly Reliable Resistive Switching Memory with Reconfigurability for Neuromorphic Computing and Ultrasonic Tissue Classification

Authors
Kim, DohyungBang, HyeonsuBaac, Hyoung WonLee, JongminTruong, Phuoc LocJeong, Bum HoAppadurai, TamilselvanPark, Kyu KwanHeo, DonghyeokNam, Vu BinhYoo, HocheoKim, KyeounghakLee, DaehoKo, Jong HwanPark, Hui Joon
Issue Date
Apr-2023
Publisher
WILEY-V C H VERLAG GMBH
Keywords
3D ion transport channels; flexible; hardware learning rules; lasers; neuromorphic; reconfigurable; resistive switching memory; synapses
Citation
ADVANCED FUNCTIONAL MATERIALS, v.33, no.14, pp.1 - 22
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
33
Number
14
Start Page
1
End Page
22
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/185029
DOI
10.1002/adfm.202213064
ISSN
1616-301X
Abstract
Reversible metal-filamentary mechanism has been widely investigated to design an analog resistive switching memory (RSM) for neuromorphic hardware-implementation. However, uncontrollable filament-formation, inducing its reliability issues, has been a fundamental challenge. Here, an analog RSM with 3D ion transport channels that can provide unprecedentedly high reliability and robustness is demonstrated. This architecture is realized by a laser-assisted photo-thermochemical process, compatible with the back-end-of-line process and even applicable to a flexible format. These superior characteristics also lead to the proposal of a practical adaptive learning rule for hardware neural networks that can significantly simplify the voltage pulse application methodology even with high computing accuracy. A neural network, which can perform the biological tissue classification task using the ultrasound signals, is designed, and the simulation results confirm that this practical adaptive learning rule is efficient enough to classify these weak and complicated signals with high accuracy (97%). Furthermore, the proposed RSM can work as a diffusive-memristor at the opposite voltage polarity, exhibiting extremely stable threshold switching characteristics. In this mode, several crucial operations in biological nervous systems, such as Ca2+ dynamics and nonlinear integrate-and-fire functions of neurons, are successfully emulated. This reconfigurability is also exceedingly beneficial for decreasing the complexity of systems—requiring both drift- and diffusive-memristors.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Hui Joon photo

Park, Hui Joon
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE