Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Elucidation and modulation of active sites in holey graphene electrocatalysts for H2O2 productionopen access

Authors
Koh, Ki HwanMostaghimi, Amir Hassan BagherzadehChang, QiaowanKim, Yu JoongSiahrostami, SamiraHan, Tae HeeChen, Zheng
Issue Date
Jan-2023
Publisher
WILEY
Keywords
electrocatalyst; graphene; hydrogen peroxide; oxygen reduction reaction
Citation
ECOMAT, v.5, no.1, pp.1 - 14
Indexed
SCIE
SCOPUS
Journal Title
ECOMAT
Volume
5
Number
1
Start Page
1
End Page
14
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/186122
DOI
10.1002/eom2.12266
ISSN
2567-3173
Abstract
Selective electrochemical oxygen reduction (ORR) toward a two-electron (2e(-)) pathway is an eco-friendly alternative method for H2O2 synthesis to replace the energy-intensive anthraquinone oxidation process. Carbon-based electrocatalysts (CBEs) show great potential for practical H2O2 synthesis. However, their complex structures make it challenging to determine the nature of active sites and to precisely control them. Herein, we show that precise modulation of the chemistry and structures of holey graphene with edge sites enriched by oxygen-containing functional groups can facilitate 2e(-) ORR. These combined functionalities could improve ORR performance under various pH conditions, for example, resulting in an average of 95% H2O2 selectivity, similar to 97% Faraday efficiency, high productivity of 2360 mol kg(cat)(-1) h(-1) in alkaline media. Density functional theory calculations on the oxygen functional groups at the edge sites revealed the most active site for 2e(-) ORR is a synergy between ether (C-O-C) and carbonyl (C=O) functional groups with nearly zero overpotential.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher HAN, TAE HEE photo

HAN, TAE HEE
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE