Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A phase-convertible fast ionic conductor with a monolithic plastic crystalline host

Authors
Lee, SeongsooMoon, JanghyukBintang, His MuhammadShin, SungheeJung, Hun-GiYu, Seung-HoOh, Si HyoungWhang, DongmokLim, Hee-Dae
Issue Date
May-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.9, no.17, pp.10838 - 10845
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY A
Volume
9
Number
17
Start Page
10838
End Page
10845
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/186233
DOI
10.1039/d1ta01367j
ISSN
2050-7488
Abstract
Designing a fast ionic conductor has been an essential issue in next-generation batteries based on all-solid-state systems, with specific application targets in large-scale energy storage devices. For this wide range of applications, high levels of ionic conductivity, as well as safety, should be preferentially ensured. However, current solid electrolyte technology is unable to meet the high standards of acceptable conductivity and becomes more problematic in multivalent-ion batteries. Herein, we have proposed a novel phase-convertible ionic conductor based on a monolithic succinonitrile (SN) plastic crystalline material. The unique properties of SN, with high polarity and high rotational degrees of freedom, enable it to dissolve Mg salts and allow for fast transport of cations in the solid phase. For the first time, a high Mg2+ ion conductivity of 2.8 x 10(-5) S cm(-1) was demonstrated at room temperature, and high chemical and thermal stabilities with a wide electrochemically stable window were proven. The monolithic SN structure was able to process simple phase transitions between liquids and solids; therefore, the highly deformable phase-convertible ionic conductor enabled the formation of excellent conformal contact with the electrode. In addition, the origin of the high conductivity was theoretically investigated through density functional theory calculations. We believe that the unique host of monolithic SN is a useful platform with potential applicability for most kinds of cation with fast ion-conducting properties.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lim, Hee Dae photo

Lim, Hee Dae
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE