Detailed Information

Cited 9 time in webofscience Cited 9 time in scopus
Metadata Downloads

Fermi-Level Unpinning Technique with Excellent Thermal Stability. for n-Type Germanium

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Gwang-Sik-
dc.contributor.authorKim, Seung-Hwan-
dc.contributor.authorLee, Tae In-
dc.contributor.authorCho, Byung Jin-
dc.contributor.authorChoi, Changhwan-
dc.contributor.authorShin, Changhwan-
dc.contributor.authorShim, Joon Hyung-
dc.contributor.authorKim, Jiyoung-
dc.contributor.authorYu, Hyun-Yong-
dc.date.accessioned2021-08-02T14:29:32Z-
dc.date.available2021-08-02T14:29:32Z-
dc.date.created2021-05-12-
dc.date.issued2017-10-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/18763-
dc.description.abstractA metal interlayer semiconductor (M I S) structure with excellent thermal stability and electrical performance for a nonalloyed contact scheme is developed, and considerations for designing thermally stable M I S structure are demonstrated on the basis of n-type germanium (Ge). A thermal annealing process makes M-I-S structures lose their Fermi-level unpinning and electron Schottky barrier height reduction effect in two mechanisms: (1) oxygen (O) diffusion from the interlayer to the contact metal due to high reactivity of a pure metal contact with O and (2) interdiffusion between the contact metal and semiconductor through grain boundaries of the interlayer. A pure metal contact such as titanium (Ti) provides very poor thermal stability due to its high reactivity with O. A structure with a tantalum nitride (TaN) metal contact and a titanium dioxide (TiO2) interlayer exhibits moderate thermal stability up to 400 degrees C because TaN has much lower reactivity with O than with Ti. However, the TiO2 interlayer cannot prevent the interdiffusion process because it is easily crystallized during thermal annealing and its grain boundaries act as diffusion path. A zinc oxide (ZnO) interlayer doped with group-III elements, such as an aluminum-doped ZnO (AZO) interlayer, acts as a good diffusion barrier due to its high crystallization temperature. A TaN/AZO/n-Ge structure provides excellent thermal stability above 500 degrees C as it can prevent both O diffusion and interdiffusion processes; hence, it exhibits Ohmic contact properties for all thermal annealing temperatures. This work shows that, to fabricate a thermally stable and low resistive M-I-S contact structure, the metal contact should have low reactivity with O and a low work function, and the interlayer should have a high crystallization temperature and a low conduction band offset to Ge. Furthermore, new insights are provided for designing thermally stable M I S contact schemes for any semiconductor material that suffers from the Fermi-level pinning problem.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleFermi-Level Unpinning Technique with Excellent Thermal Stability. for n-Type Germanium-
dc.typeArticle-
dc.contributor.affiliatedAuthorChoi, Changhwan-
dc.identifier.doi10.1021/acsami.7b10346-
dc.identifier.scopusid2-s2.0-85031697389-
dc.identifier.wosid000413503700049-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.9, no.41, pp.35988 - 35997-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume9-
dc.citation.number41-
dc.citation.startPage35988-
dc.citation.endPage35997-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusDIFFUSION BARRIER-
dc.subject.keywordPlusINTERFACIAL LAYER-
dc.subject.keywordPlusTANTALUM NITRIDE-
dc.subject.keywordPlusLOW-RESISTIVITY-
dc.subject.keywordPlusGE-
dc.subject.keywordPlusCONTACT-
dc.subject.keywordPlusMETALLIZATION-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusHEIGHT-
dc.subject.keywordPlusFILM-
dc.subject.keywordAuthorgermanium-
dc.subject.keywordAuthormetal-interlayer-semiconductor structure-
dc.subject.keywordAuthorthermal stability-
dc.subject.keywordAuthorSchottky barrier height-
dc.subject.keywordAuthortantalum nitride-
dc.subject.keywordAuthoraluminum-doped zinc oxide-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsami.7b10346-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Chang hwan photo

Choi, Chang hwan
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE