Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

One Nanometer HfO2-Based Ferroelectric Tunnel Junctions on Silicon

Full metadata record
DC Field Value Language
dc.contributor.authorCheema, Suraj S.-
dc.contributor.authorShanker, Nirmaan-
dc.contributor.authorHsu, Cheng-Hsiang-
dc.contributor.authorDatar, Adhiraj-
dc.contributor.authorBae, Jongho-
dc.contributor.authorKwon, Daewoong-
dc.contributor.authorSalahuddin, Sayeef-
dc.date.accessioned2023-08-16T08:09:46Z-
dc.date.available2023-08-16T08:09:46Z-
dc.date.created2023-07-21-
dc.date.issued2022-06-
dc.identifier.issn2199160X-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/189291-
dc.description.abstractIn ferroelectric materials, spontaneous symmetry breaking leads to a switchable electric polarization, which offers significant promise for nonvolatile memories. In particular, ferroelectric tunnel junctions (FTJs) have emerged as a new resistive switching memory which exploits polarization-dependent tunnel current across a thin ferroelectric barrier. This work integrates FTJs with complementary metal-oxide-semiconductor-compatible Zr-doped HfO2 (Zr:HfO2) ferroelectric barriers of just 1 nm thickness, grown by atomic layer deposition on silicon. These 1 nm Zr:HfO2 tunnel junctions exhibit large polarization-driven electroresistance (>20 000%), the largest value reported for HfO2-based FTJs. In addition, due to just a 1 nm ferroelectric barrier, these junctions provide large tunneling current (>1 A cm(-2)) at low read voltage, orders of magnitude larger than reported thicker HfO2-based FTJs. Therefore, this proof-of-principle demonstration provides an approach to simultaneously overcome three major drawbacks of prototypical FTJs: a Si-compatible ultrathin ferroelectric, large electroresistance, and large read current for high-speed operation.-
dc.language영어-
dc.language.isoen-
dc.publisherWILEY-
dc.titleOne Nanometer HfO2-Based Ferroelectric Tunnel Junctions on Silicon-
dc.typeArticle-
dc.contributor.affiliatedAuthorKwon, Daewoong-
dc.identifier.doi10.1002/aelm.202100499-
dc.identifier.scopusid2-s2.0-85115852733-
dc.identifier.wosid000700950500001-
dc.identifier.bibliographicCitationADVANCED ELECTRONIC MATERIALS, v.8, no.6-
dc.relation.isPartOfADVANCED ELECTRONIC MATERIALS-
dc.citation.titleADVANCED ELECTRONIC MATERIALS-
dc.citation.volume8-
dc.citation.number6-
dc.type.rimsART-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusELECTRORESISTANCE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusPHYSICS-
dc.subject.keywordPlusFUTURE-
dc.subject.keywordAuthorferroelectric tunnel junction-
dc.subject.keywordAuthorhafnium oxide-
dc.subject.keywordAuthorresistive switching memory-
dc.subject.keywordAuthorultrathin ferroelectricity-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1002/aelm.202100499-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Daewoong photo

Kwon, Daewoong
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE