Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rational molecular design of polymeric materials toward efficient triboelectric energy harvestingopen access

Authors
Lee, Jong HyeokKim, Kyung HoonChoi, MoonkangJeon, JisooYoon, Hyeok JunChoi, JinhyeokLee, Young-SeakLee, MinbaekWie, Jeong Jae
Issue Date
Dec-2019
Publisher
ELSEVIER
Keywords
Triboelectric energy harvesting; Electron affinity; Hypervalency; Yellow chemistry; Inverse vulcanization; Surface modification
Citation
NANO ENERGY, v.66, pp.1 - 10
Indexed
SCIE
SCOPUS
Journal Title
NANO ENERGY
Volume
66
Start Page
1
End Page
10
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/189876
DOI
10.1016/j.nanoen.2019.104158
ISSN
2211-2855
Abstract
In the periodic table, halogenic elements have a larger electron affinity (EA = -270 similar to-349 kJ/mol) than any other group, allowing them to accommodate extra electrons for triboelectric energy harvesting. However, because halogenic elements are not homopolymerizable, carbon (EA = -122 kJ/mol)-based polymers (i.e. PTFE, PVDF) are often employed for structural use and mechanical integrity at the expense of reduced electron affinity, intrinsically sacrificing triboelectric energy harvesting. Herein, we report the first example of triboelectric energy harvesting with sulfur backbone-based inorganic polymers synthesized via inverse-vulcanization process of elemental sulfur, a by-product of petroleum refining process. Fluorinated polymeric sulfur demonstrated 6-fold and 3-fold increase in triboelectric energy outputs in voltage and currents respectively in comparison with commercial PTFE film. Such high energy harvesting was achieved by high electron affinity of sulfur (-200 kJ/mol) and by its hypervalency via expanded-octet which provided coordination of two additional bonds with halogens compared to carbon. The triboelectric open-circuit voltage output reached 1366 V and demonstrated direct powering of 630 LEDs under the minimal force of similar to 30N. This yellow chemistry-based molecular engineering paves a way for a new class of triboelectric materials toward low-cost, eco-friendly, and scalable triboelectric energy harvesting applications.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Wie, Jeong Jae photo

Wie, Jeong Jae
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE