Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validationopen access

Authors
Bae, SohiAn, ChansikAhn, Sung SooKim, HwiyoungHan, KyunghwaKim, Sang WookPark, Ji EunKim, Ho SungLee, Seung-Koo
Issue Date
Jul-2020
Publisher
NATURE PORTFOLIO
Citation
SCIENTIFIC REPORTS, v.10, no.1, pp.1 - 10
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
10
Number
1
Start Page
1
End Page
10
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/190142
DOI
10.1038/s41598-020-68980-6
ISSN
2045-2322
Abstract
We evaluated the diagnostic performance and generalizability of traditional machine learning and deep learning models for distinguishing glioblastoma from single brain metastasis using radiomics. The training and external validation cohorts comprised 166 (109 glioblastomas and 57 metastases) and 82 (50 glioblastomas and 32 metastases) patients, respectively. Two-hundred-and-sixty-five radiomic features were extracted from semiautomatically segmented regions on contrast-enhancing and peritumoral T2 hyperintense masks and used as input data. For each of a deep neural network (DNN) and seven traditional machine learning classifiers combined with one of five feature selection methods, hyperparameters were optimized through tenfold cross-validation in the training cohort. The diagnostic performance of the optimized models and two neuroradiologists was tested in the validation cohort for distinguishing glioblastoma from metastasis. In the external validation, DNN showed the highest diagnostic performance, with an area under receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy of 0.956 (95% confidence interval [CI], 0.918-0.990), 90.6% (95% CI, 80.5-100), 88.0% (95% CI, 79.0-97.0), and 89.0% (95% CI, 82.3-95.8), respectively, compared to the best-performing traditional machine learning model (adaptive boosting combined with tree-based feature selection; AUC, 0.890 (95% CI, 0.823-0.947)) and human readers (AUC, 0.774 [95% CI, 0.685-0.852] and 0.904 [95% CI, 0.852-0.951]). The results demonstrated deep learning using radiomic features can be useful for distinguishing glioblastoma from metastasis with good generalizability.
Files in This Item
Appears in
Collections
서울 의과대학 > 서울 영상의학교실 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bae, Sohi photo

Bae, Sohi
COLLEGE OF MEDICINE (DEPARTMENT OF RADIOLOGY)
Read more

Altmetrics

Total Views & Downloads

BROWSE