Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tailored Electronic Structure of Ir in High Entropy Alloy for Highly Active and Durable Bifunctional Electrocatalyst for Water Splitting under an Acidic Environment

Authors
Kwon, JiseokSun, SehoChoi, SeunggunLee, KangchunJo, SeonghanPark, KeeminKim, Young KwangPark, Ho BumPark, Hee YoungJang, Jong HyunHan, HyuksuPaik, UngyuSong, Taeseup
Issue Date
Jun-2023
Publisher
WILEY-V C H VERLAG GMBH
Keywords
bifunctional electrocatalysts; compositional engineering; high entropy alloys; PEM electrolysis
Citation
ADVANCED MATERIALS, v.35, no.26, pp.1 - 11
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED MATERIALS
Volume
35
Number
26
Start Page
1
End Page
11
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/191688
DOI
10.1002/adma.202300091
ISSN
0935-9648
Abstract
Proton-exchange-membrane water electrolysis (PEMWE) requires an efficient and durable bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, Ir-based electrocatalyst is designed using the high entropy alloy (HEA) platform of ZnNiCoIrX with two elements (X: Fe and Mn). A facile dealloying in the vacuum system enables the construction of a nanoporous structure with high crystallinity using Zn as a sacrificial element. Especially, Mn incorporation into HEAs tailors the electronic structure of the Ir site, resulting in the d-band center being far away from the Fermi level. Downshifting of the d-band center weakens the adsorption energy with reaction intermediates, which is beneficial for catalytic reactions. Despite low Ir content, ZnNiCoIrMn delivers only 50 mV overpotential for HER at -50 mA cm(-2) and 237 mV overpotential for the OER at 10 mA cm(-2). Furthermore, ZnNiCoIrMn shows almost constant voltage for the HER and OER for 100 h and a high stability number of 3.4 x 10(5) n(hydrogen) n(Ir)(-1) and 2.4 x 10(5) n(oxygen) n(Ir)(-1), demonstrating the exceptional durability of the HEA platform. The compositional engineering of ZnNiCoIrMn limits the diffusion of elements by high entropy effects and simultaneously tailors the electronic structure of active Ir sites, resulting in the modified cohesive and adsorption energies, all of which can suppress the dissolution of elements.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Ho Bum photo

Park, Ho Bum
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE