Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Advances in the biomass valorization in bioelectrochemical systems: A sustainable approach for microbial-aided electricity and hydrogen production

Authors
Sharma, MonikaSalama, El-SayedThakur, NandiniAlghamdi, HishamJeon, Byong-HunLi, Xiangkai
Issue Date
Jun-2023
Publisher
Elsevier B.V.
Keywords
Algae; Bioelectricity; Biohydrogen; Biowaste; Lignocellulose; Mixed biomass
Citation
Chemical Engineering Journal, v.465, pp.1 - 9
Indexed
SCIE
SCOPUS
Journal Title
Chemical Engineering Journal
Volume
465
Start Page
1
End Page
9
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/191729
DOI
10.1016/j.cej.2023.142546
ISSN
1385-8947
Abstract
Availability of biomass makes biofuel from bioresources more feasible. Recently, algal biomass (AB) and lignocellulosic biomass (LB) have been widely used in bioelectrochemical systems (BESs) for bioelectricity and biohydrogen production. However, no review provides the current scenario of bioelectricity and biohydrogen generation from various biomass and biowaste in BESs. Therefore, the current review provides a recent and in-depth understanding of biomass-specific BESs including biomass selection, pretreatment approaches, dominating microbes, economic feasibility, and pilot-scale up. Biomass of E. prolifera and bamboo (hydrolysate) were reported to have a high ability for bioelectricity generation with maximum power densities of 3810 and 578 mW m−2, respectively. Biohydrogen productions were 1608 and 1017 mL H2 g−1 with fruit waste and S. Japonica, respectively. Previous studies used single biomass in BESs and almost there is no research work on mixed biomass. Co-digestion and/or mixing of biomass (such as AB and LB) or biowaste (lipid-rich and carbohydrate-rich feedstock) would enhance the accessibility of substrates to microbes which could increase the bioelectricity and biohydrogen. The integration of MFCs with primary and secondary units of wastewater treatment plants (WWTPs) is restricted to the utilization of wastewater and sludge (i.e., substrate). Thus, biomass augmentation as an external substrate in WWTP might facilitate the growth of electroactive microbes and can efficiently support the pilot-scale BESs.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 자원환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Byong Hun photo

Jeon, Byong Hun
COLLEGE OF ENGINEERING (DEPARTMENT OF EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE