Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Room-temperature stable CsPbI3 perovskite quantum dots prepared by layer-by-layer assembly for photonic synapse

Full metadata record
DC Field Value Language
dc.contributor.authorKu, Boncheol-
dc.contributor.authorKoo, Bonkee-
dc.contributor.authorKim, Wooyeon-
dc.contributor.authorKim, Younghoon-
dc.contributor.authorJeon, Yu-Rim-
dc.contributor.authorKo, Min Jae-
dc.contributor.authorChoi, Changhwan-
dc.date.accessioned2023-10-10T02:59:07Z-
dc.date.available2023-10-10T02:59:07Z-
dc.date.created2023-05-30-
dc.date.issued2023-10-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/191986-
dc.description.abstractCsPbX3 (X = I, Br, or Cl) perovskite materials have attracted great interest due to versatile and excellent photoelectric properties, applicable to various devices ranging from memory to solar cells. In particular, the cubic phase of CsPbI3 perovskite has a band gap of 1.73 eV, absorbing most of the visible region. However, despite excellent material properties, it is still difficult to apply to devices due to the unstable crystalline phase of CsPbI3 at room temperature. To overcome this shortcoming, we fabricated a cubic CsPbI3 perovskite quantum dots (CsPbI3-PQDs) thin film using in-situ ligand exchange layer-by-layer self-assembly (LbL SA). These room-temperature stable CsPbI3-PQDs thin films could control not only the thickness in nano-scale, but also the electrical properties. For device application, CsPbI3-PQD was formed on the fluorine doped tin oxide (FTO) substrate by LbL SA method, and W/CsPbI3-PQD/FTO photonic synapse was fabricated and evaluated. This photonic synapse exhibited photo-sensitive current-voltage characteristics under various UV stimuli such as intensity, exposure time, and interval. Furthermore, we successfully emulated the essential synaptic behaviors induced by photonic stimulus including short term plasticity, long term plasticity, and paired pulse facilitation. The CsPbI3-PQD-based device exhibited resistive switching characteristics with Ron/Roff of 103, stable endurance (103 cycles) and retention time (∼ 9 ×103 s). Additionally, we fabricated a heterojunction CsPbI3-PQD/a-IGZO based synaptic device and improved synaptic behaviors under various visible stimuli by enhancing the maintenance capability of photogenerated charge carriers through energy band engineering.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier Ltd-
dc.titleRoom-temperature stable CsPbI3 perovskite quantum dots prepared by layer-by-layer assembly for photonic synapse-
dc.typeArticle-
dc.contributor.affiliatedAuthorKo, Min Jae-
dc.contributor.affiliatedAuthorChoi, Changhwan-
dc.identifier.doi10.1016/j.jallcom.2023.170459-
dc.identifier.scopusid2-s2.0-85159637825-
dc.identifier.wosid001009548700001-
dc.identifier.bibliographicCitationJournal of Alloys and Compounds, v.960, pp.1 - 12-
dc.relation.isPartOfJournal of Alloys and Compounds-
dc.citation.titleJournal of Alloys and Compounds-
dc.citation.volume960-
dc.citation.startPage1-
dc.citation.endPage12-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusCELL-
dc.subject.keywordAuthorPerovskite-
dc.subject.keywordAuthorQuantum dot-
dc.subject.keywordAuthorPhotonic-
dc.subject.keywordAuthorResistive switching-
dc.subject.keywordAuthorSynapse-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0925838823017620?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Chang hwan photo

Choi, Chang hwan
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE