Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Practical Cathodes for Sodium-Ion Batteries: Who Will Take The Crown?

Authors
Liang, XinghuiHwang, Jang-YeonSun, Yang-Kook
Issue Date
Oct-2023
Publisher
WILEY-V C H VERLAG GMBH
Keywords
cathode materials; commercialization; O3-type structures; sodium ion batteries; strategies
Citation
ADVANCED ENERGY MATERIALS, v.13, no.37, pp.1 - 41
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED ENERGY MATERIALS
Volume
13
Number
37
Start Page
1
End Page
41
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/192952
DOI
10.1002/aenm.202301975
ISSN
1614-6832
Abstract
In recent decades, sodium-ion batteries (SIBs) have received increasing attention because they offer cost and safety advantages and avoid the challenges related to limited lithium/cobalt/nickel resources and environmental pollution. Because the sodium storage performance and production cost of SIBs are dominated by the cathode performance, developing cathode materials with large-scale production capacity is the key to achieving commercial applications of SIBs. Therefore, developing host materials with high energy density, long cycling life, low production cost, and high chemical/environmental stability is crucial for implementing advanced SIBs. Among the developed cathode materials for SIBs, O3-type sodiated transition-metal oxides have attracted extensive attention owing to their simple synthesis methods, high theoretical specific capacity, and sufficient Na content. However, the relatively large Na-ion radius leads to sluggish diffusion kinetics and inevitable complex phase transitions during the deintercalation/intercalation process, resulting in poor rate capability and cycling stability. Therefore, this review comprehensively summarizes the research progress and modification strategies for O3-type cathodes, including the component design, surface modification, and optimization of synthesis methods. This work aims to guide the development of commercial layered oxides and provide technical support for the next generation of energy-storage systems.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sun, Yang Kook photo

Sun, Yang Kook
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE