Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

CFD investigation of three-dimensional flow phenomena in a JAEA 127-pin wire-wrapped fuel assembly

Authors
Jeong, Jae-HoSong, MinseopLee, Kwi-Lim
Issue Date
Nov-2017
Publisher
ELSEVIER SCIENCE SA
Keywords
Three-dimensional flow field; Vortex structures; Wire-wrapped fuel assembly; CFD; RANS
Citation
NUCLEAR ENGINEERING AND DESIGN, v.323, pp.166 - 184
Indexed
SCIE
SCOPUS
Journal Title
NUCLEAR ENGINEERING AND DESIGN
Volume
323
Start Page
166
End Page
184
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/193055
DOI
10.1016/j.nucengdes.2017.08.008
ISSN
0029-5493
Abstract
This paper presents a RANS (Reynolds Averaged Navier-Stokes simulation) based CFD (Computational Fluid Dynamics) investigation of the three-dimensional flow phenomena in a JAEA (Japan Atomic Energy Agency) 127-pin wire-wrapped fuel assembly. Complicated and vortical flow phenomena in the wire-wrapped fuel bundles have been elucidated by a CFD analysis with a high resolution scheme and a shear stress transport (SST) turbulence model, and by a vortex structure identification technique based on the critical point theory. The CFD results show a good agreement with the JAEA experiment results with the 127-pin wire-wrapped fuel assembly, which was implemented using water for validating the pressure drop formulas in the JAEA sub-channel analysis code, ASFRE. The generation and demise of the vortex structures in the edge, corner, and interior sub-channels were periodically synchronized with the angular positions of the wire spacers. The axial and tangential flows in the edge and corner sub-channels are much stronger than those in the interior sub-channels. The vortex structures in the edge sub-channels have higher axial and tangential velocities than those in the corner sub-channels, interior sub-channels, and the wake region generated by wire spacers. The vortex structures in the edge subchannels are a type of longitudinal vortex, and have a larger scale than the other sub-channels. The vortex structures in the corner sub-channels have lower axial and tangential velocities than those in the edge and interior sub-channels. The turbulence intensity in the sub-channels is remarkably dominated by the magnitude of the axial velocity. The vortex structures in the edge, corner, and interior sub-channels have a higher turbulence intensity and lower vorticity than the small-scale wakes near the wire spacers. The driving forces on the wire in the X-, Y-, and Z-directions are not only dependent on the axial velocity, but are also significantly dependent on the relative angular position between the wire spacer and rod, and the relative position between the wire spacer and duct wall.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 원자력공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Minseop photo

Song, Minseop
COLLEGE OF ENGINEERING (DEPARTMENT OF NUCLEAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE