Detailed Information

Cited 28 time in webofscience Cited 29 time in scopus
Metadata Downloads

Facile synthetic method of catalyst-loaded ZnO nanofibers composite sensor arrays using bio-inspired protein cages for pattern recognition of exhaled breath

Authors
Cho, Hee-JinKim, Sang-JoonChoi, Seon JinJang, Ji-SooKim, Il-Doo
Issue Date
May-2017
Publisher
ELSEVIER SCIENCE SA
Keywords
Chemical sensors; Breath analysis; Protein cage; Electrospinning; Semiconductor metal oxide; Pattern recognition
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.243, pp.166 - 175
Indexed
SCIE
SCOPUS
Journal Title
SENSORS AND ACTUATORS B-CHEMICAL
Volume
243
Start Page
166
End Page
175
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/20327
DOI
10.1016/j.snb.2016.11.137
ISSN
09254005
Abstract
Functionalization of catalytic nanoparticles (NPs) on semiconductor metal oxide (SMO) sensing layer is an indispensable process to obtain improved sensitivity and selectivity for high performance chemical sensors. It is a critical challenge to achieve homogeneous distribution of nanoscale catalysts on SMO in consideration that gas sensing characteristics of SMO-based sensing layer are significantly influenced by the size and distribution of catalysts. Here, we propose a highly effective functionalization method to achieve well-distributed catalytic NPs onto one dimensional (1D) SMO nanofibers (NFs) using protein cage templates: apoferrtin. By simply replacing precursor in the apoferritin assisted method, not only precious catalyst such as Pt but also non-precious catalysts such as La and Cu were successfully synthesized in nanoscale (i.e., 3-5nm). Furthermore, the apoferritin-encapsulated catalysts exhibited high dispersion property due to repulsive force between protein shells. For this reason, catalytic NPs were homogeneously decorated on ZnO NFs after electrospinning followed by calcination. Catalytic Pt NPs and Cu NPs functionalized ZnO NFs exhibited approximately 6.38-fold (R-air/R-gas = 13.07) and 2.95 fold (R-air/R-gas = 6.04) improved acetone response compared with the response (R-air/R-gas = 2.05) of pristine ZnO NFs. In the case of La NPs functionalized ZnO NFs, 9.31-fold improved nitrogen monoxide response (R-air/R-gas =10.06) was achieved compared with the response of pristine ZnO NFs. The four catalyst-ZnO composite NFs successfully distinguished simulated breath components such as acetone, toluene, nitrogen monoxide, carbon monoxide, and ammonia with well-classified patterns by principal component analysis (PCA). This work demonstrated a robustness of synthetic and functionalization method using bio-inspired protein templates combined with electrospinning technique and a promising potential of using non-precious catalysts to establish diverse sensing material libraries that can be applicable to breath pattern recognition for diagnosis of diseases.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Seon Jin photo

Choi, Seon Jin
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE